首页> 外文期刊>IEEE transactions on industrial informatics >A Hierarchical Data-Driven Method for Event-Based Load Shedding Against Fault-Induced Delayed Voltage Recovery in Power Systems
【24h】

A Hierarchical Data-Driven Method for Event-Based Load Shedding Against Fault-Induced Delayed Voltage Recovery in Power Systems

机译:基于事件的负载脱落的分层数据驱动方法免受电力系统中的断层诱导的延迟电压恢复

获取原文
获取原文并翻译 | 示例

摘要

Load shedding (LS) is an effective control strategy against voltage instability in power systems. With increasing uncertainties and complexity in modern power grids, there is a pressing need for faster and more accurate control decisions. In this article, a hierarchical data-driven method is proposed for the online prediction of event-based load shedding (ELS) against fault-induced delayed voltage recovery. The ELS problem is hierarchically modeled as a multi-output classification subproblem for identifying the best shedding location and a regression subproblem to predict the minimum shedding amount. To solve the two subproblems, the weighted kernel extreme learning machine is adopted to construct a direct mapping between the system pre-fault operating conditions and the corresponding control variables. The method is tested on the ELS database, which is analytically generated via a novel adaptive sensitivity-based process on the New England 39-bus system. Compared with other methods, the proposed method is very accurate in prediction with excellent control performance, which maintains superior prediction ability under an imbalanced data distribution.
机译:负载脱落(LS)是电力系统中电压不稳定的有效控制策略。随着现代电网的不确定性和复杂性,需要更快,更准确的控制决策。在本文中,提出了一种分层数据驱动方法,用于针对故障引起的延迟电压恢复的基于事件的负载脱落(ELS)的在线预测。 ELS问题是分层建模的,作为一个多输出分类子问题,用于识别最佳脱落位置和回归子问题,以预测最小脱落量。为了解决两个子问题,采用加权内核极端学习机来构建系统预故障操作条件和相应控制变量之间的直接映射。该方法在ELS数据库上测试,通过新英格兰39总线系统的新型自适应灵敏度的过程进行了分析生成的。与其他方法相比,所提出的方法在具有优异控制性能的预测中非常准确,这在不平衡数据分布下保持了卓越的预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号