首页> 外文期刊>IEEE transactions on industrial informatics >A Machine-Learning-Based Cyber Attack Detection Model for Wireless Sensor Networks in Microgrids
【24h】

A Machine-Learning-Based Cyber Attack Detection Model for Wireless Sensor Networks in Microgrids

机译:基于机器学习的网络攻击检测模型,用于微电网中的无线传感器网络

获取原文
获取原文并翻译 | 示例

摘要

In this article, an accurate secured framework to detect and stop data integrity attacks in wireless sensor networks in microgrids is proposed. An intelligent anomaly detection method based on prediction intervals (PIs) is introduced to distinguish malicious attacks with different severities during a secured operation. The proposed anomaly detection method is constructed based on the lower and upper bound estimation method to provide optimal feasible PIs over the smart meter readings at electric consumers. It also makes use of the combinatorial concept of PIs to solve the instability issues arising from the neural networks. Due to the high complexity and oscillatory nature of the electric consumers data, a new modified optimization algorithm based on symbiotic organisms search is developed to adjust the NN parameters. The high accuracy and satisfying performance of the proposed model are assessed on the practical data of a residential microgrid.
机译:在本文中,提出了一种精确的安全框架,用于检测和停止微电网中的无线传感器网络中的数据完整性攻击。引入基于预测间隔(PIS)的智能异常检测方法以在安全操作期间与不同的严重性区分恶意攻击。基于下限和上限估计方法构建所提出的异常检测方法,以在电消耗仪的智能仪表读数上提供最佳可行性PIS。它还利用了PI的组合概念来解决神经网络产生的不稳定问题。由于电气消费者数据的高复杂性和振荡性,开发了一种基于共生体系搜索的新修改优化算法来调整NN参数。对所提出的型号的高精度和满足性能进行评估在住宅微电网的实际数据上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号