首页> 外文期刊>IEEE transactions on industrial informatics >Constrained Ensemble Kalman Filter for Distributed Electrochemical State Estimation of Lithium-Ion Batteries
【24h】

Constrained Ensemble Kalman Filter for Distributed Electrochemical State Estimation of Lithium-Ion Batteries

机译:用于锂离子电池的分布式电化学状态估计的约束合奏卡尔曼滤波器

获取原文
获取原文并翻译 | 示例

摘要

This article proposes a novel model-based estimator for distributed electrochemical states of lithium-ion (Li-ion) batteries. Through systematic simplifications of a high-order electrochemical-thermal coupled model consisting of partial differential-algebraic equations, a reduced-order battery model is obtained, which features an equivalent circuit form and captures local state dynamics of interest inside the battery. Based on the physics-based equivalent circuit model, a constrained ensemble Kalman filter (EnKF) is pertinently designed to detect internal variables, such as the local concentrations, overpotential, and molar flux. To address slow convergence issues due to weak observability of the battery model, the Li-ions mass conservation is judiciously considered as a constraint in the estimation algorithm. The estimation performance is comprehensively examined under a wide operating range. It demonstrates that the proposed EnKF-based nonlinear estimator is able to accurately reproduce the physically meaningful state variables at a low computational cost and is significantly superior to its prevalent benchmarks for online applications.
机译:本文提出了一种用于锂离子(锂离子)电池的分布式电化学状态的新型基于模型的估计器。通过系统简化由部分差分代数方程组成的高阶电化学 - 热耦合模型,获得了减阶电池模型,其特征是等效电路形式,并捕获电池内部的局部状态动态。基于基于物理的等效电路模型,受约束的集合Kalman滤波器(ENKF)无论如何地设计用于检测内部变量,例如局部浓度,过电容和摩尔通量。为了由于电池模型的弱可观察性而出现慢的收敛问题,Li-离子大众保护是明显被认为是估计算法中的约束。在宽的工作范围内全面检查估计性能。它表明,所提出的基于ENKF的非线性估计器能够以低计算成本精确地再现物理有意义的状态变量,并且显着优于其在线应用程序的普遍基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号