首页> 外文期刊>IEEE transactions on industrial informatics >Security Log Analysis in Critical Industrial Systems Exploiting Game Theoretic Feature Selection and Evidence Combination
【24h】

Security Log Analysis in Critical Industrial Systems Exploiting Game Theoretic Feature Selection and Evidence Combination

机译:关键工业系统中的安全对数分析利用游戏理论特征选择和证据组合

获取原文
获取原文并翻译 | 示例

摘要

Critical industrial systems have become profitable targets for cyber-attackers. Practitioners and administrators rely on a variety of data sources to develop security situation awareness at runtime. In spite of the advances in security information and event management products and services for handling heterogeneous data sources, analysis of proprietary logs generated by industrial systems keeps posing many challenges due to the lack of standard practices, formats, and threat models. This article addresses log analysis to detect anomalies, such as failures and misuse, in a critical industrial system. We conduct our study with a real-life system by a top leading industry provider in the air traffic control domain. The system emits massive volumes of highly-unstructured proprietary textual logs at runtime. We propose to extract quantitative metrics from logs and to detect anomalies by means of game theoretic feature selection and evidence combination. Experiments indicate that the proposed approach achieves high precision and recall at small tuning efforts.
机译:关键工业系统已成为网络攻击者的有利可图。从业者和管理员依靠各种数据来源,在运行时开发安全局势意识。尽管安全信息和事件管理产品和服务的进展,但是处理异构数据源的服务,因此由于缺乏标准实践,格式和威胁模型,工业系统生成的专有日志的分析不断存在许多挑战。本文解决了对数分析,以检测一个严重的工业系统中的异常,例如失败和滥用。我们在空中交通管制领域的一首顶级行业提供商用现实生活系统进行研究。该系统在运行时发出大量高度非结构化的专有文本日志。我们建议通过日志提取量化指标,并通过游戏理论特征选择和证据组合检测异常。实验表明,拟议的方法在小调努力下实现了高精度和回忆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号