首页> 外文期刊>IEEE transactions on industrial informatics >Compressive Informative Sparse Representation-Based Power Quality Events Classification
【24h】

Compressive Informative Sparse Representation-Based Power Quality Events Classification

机译:基于压缩的信息稀疏表示的电能质量事件分类

获取原文
获取原文并翻译 | 示例

摘要

Power quality (PQ) events are referred to any abnormal deviation from the standard sinusoidal behavior of power signals within a power system. PQ events are usually studied by tracking the behavior of voltage signals over observation points of the system. IEEE Standards have defined standard categories for PQ events based on their time behavior. Each class of these events may have different level of importance from different contributors' perspective (utilities, system operators, or costumers). Due to increasing the usage of sensitive technological loads such as transportation, banking systems, and databases on one hand in addition to the uncertainty injected to the system from aggregation of renewables on the other hand, the fast and reliable PQ events classification is an important monitoring task in the future smart grid. In this paper, combining the theory of sparse recovery with a new high-dimensional convex hull approximation framework we have developed a fast, reliable, and adaptive PQ events classification methodology named "compressive-informative sparse representation-based" PQ events classifier. Unlike usual classification approaches, the proposed classifier does not need any training procedure while due to its linear mathematical formulation acts inherently fast. Moreover, it can be easily adapted to recognize the challenging combined PQ events in addition to any permanent change in the behavior of PQ patterns.
机译:功率质量(PQ)事件被引用到电力系统内功率信号的标准正弦行为的任何异常偏差。通常通过在系统的观察点跟踪电压信号的行为来研究PQ事件。 IEEE标准基于其时间行为为PQ事件的标准类别定义了标准类别。这些事件的每一类可能具有不同贡献者的角度不同的不同程度的重要性(公用事业,系统运营商或顾客)。由于除了从再现的不确定性,从再生能源的不确定性逐渐增加了敏感技术负荷,例如运输,银行系统和数据库的使用,另一方面,快速可靠的PQ事件分类是一个重要的监测未来智能电网的任务。在本文中,将稀疏恢复的理论与新的高维凸壳近似框架相结合,我们开发了一种快速,可靠和自适应的PQ事件分类方法,名为“基于压缩信息稀疏表示”PQ事件分类器。与通常的分类方法不同,所提出的分类器不需要任何培训程序,而由于其线性数学制定作为固有的快速行为。此外,除了PQ模式的行为的任何永久性变化之外,还可以容易地识别挑战组合的PQ事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号