首页> 外文期刊>IEEE transactions on industrial informatics >Discrete Computational Neural Dynamics Models for Solving Time-Dependent Sylvester Equation With Applications to Robotics and MIMO Systems
【24h】

Discrete Computational Neural Dynamics Models for Solving Time-Dependent Sylvester Equation With Applications to Robotics and MIMO Systems

机译:将时间依赖于应用到机器人和MIMO系统的依赖于依赖的Sylvester方程的离散计算神经动力学模型

获取原文
获取原文并翻译 | 示例

摘要

In this article, a neural dynamics model is constructed and investigated for solving time-dependent Sylvester equation with matrix inversion involved in the solving process. Besides, to eliminate the matrix inversion in the model, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno method is leveraged to construct a new model. Moreover, the global convergence performance and the effectiveness of the two discrete computational models are testified by providing theoretical analyses and numerical experiments with comparisons to the existing solutions, respectively. Two applications to robotics and the multiple-input multiple-output system are given to elucidate the feasibility of the proposed models for solving time-dependent Sylvester equation.
机译:在本文中,构建和研究了神经动力学模型,以解决与求解过程中涉及的矩阵反演的时间依赖的Sylvester方程。此外,为了消除模型中的矩阵反转,可以利用Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno方法来构建新模型。此外,通过分别提供对现有解决方案的比较和数值实验来证实了全局收敛性能和两个离散计算模型的有效性。给出了机器人和多输入多输出系统的两个应用,以阐明所提出的模型的可行性来解决时间依赖的Sylvester方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号