首页> 外文期刊>IEEE transactions on industrial informatics >Joint Computation and Communication Design for UAV-Assisted Mobile Edge Computing in IoT
【24h】

Joint Computation and Communication Design for UAV-Assisted Mobile Edge Computing in IoT

机译:IOT中无人机辅助移动边缘计算的联合计算与通信设计

获取原文
获取原文并翻译 | 示例

摘要

Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system is a prominent concept, where a UAV equipped with an MEC server is deployed to serve a number of terminal devices (TDs) of Internet of Things in a finite period. In this article, each TD has a certain latency-critical computation task in each time slot to complete. Three computation strategies can be available to each TD. First, each TD can operate local computing by itself. Second, each TD can partially offload task bits to the UAV for computing. Third, each TD can choose to offload task bits to access point via UAV relaying. We propose a new optimization problem formulation that aims to minimize the total energy consumption including communication-related energy, computation-related energy and UAV's flight energy by optimizing the bits allocation, time slot scheduling, and power allocation as well as UAV trajectory design. As the formulated problem is nonconvex and difficult to find the optimal solution, we propose to solve the problem by two parts, and obtain the near optimal solution by the Lagrangian duality method and successive convex approximation technique, respectively. By analysis, the proposed algorithm can be guaranteed to converge within a dozen of iterations. Finally, numerical results are given to validate the proposed algorithm, which is verified to be efficient and superior to the other benchmark cases.
机译:无人驾驶飞行器(UAV)译本移动边缘计算(MEC)系统是一个突出的概念,其中部署了配备MEC服务器的UAV,以在有限期内提供一些终端设备(TDS)。在本文中,每个TD在每个时隙中都有一定的延迟关键计算任务以完成。每个TD都可以使用三个计算策略。首先,每个TD都可以自身操作本地计算。其次,每个TD可以将任务位部分卸载到UAV以进行计算。第三,每个TD可以选择通过UAV中继卸载任务位到接入点。我们提出了一种新的优化问题制定,其旨在通过优化比特分配,时隙调度和功率分配以及UAV轨迹设计来最小化包括通信相关能量,计算相关能量和无人机飞行能量的总能耗。由于配制的问题是非渗透且难以找到最佳解决方案,我们建议通过两部分解决问题,并通过拉格朗日二元性方法和连续凸近似技术获得近的最佳解决方案。通过分析,可以保证所提出的算法在十几个迭代中会聚。最后,给出了数值结果来验证所提出的算法,该算法被验证为高效且优于其他基准情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号