首页> 外文期刊>IEEE transactions on industrial informatics >Cost-Driven Off-Loading for DNN-Based Applications Over Cloud, Edge, and End Devices
【24h】

Cost-Driven Off-Loading for DNN-Based Applications Over Cloud, Edge, and End Devices

机译:在云,边缘和终端设备上基于DNN的应用程序的成本驱动

获取原文
获取原文并翻译 | 示例

摘要

Currently, deep neural networks (DNNs) have achieved a great success in various applications. Traditional deployment for DNNs in the cloud may incur a prohibitively serious delay in transferring input data from the end devices to the cloud. To address this problem, the hybrid computing environments, consisting of the cloud, edge, and end devices, are adopted to offload DNN layers by combining the larger layers (more amount of data) in the cloud and the smaller layers (less amount of data) at the edge and end devices. A key issue in hybrid computing environments is how to minimize the system cost while accomplishing the offloaded layers with their deadline constraints. In this article, a self-adaptive discrete particle swarm optimization (PSO) algorithm using the genetic algorithm (GA) operators is proposed to reduce the system cost caused by data transmission and layer execution. This approach considers the characteristics of DNNs partitioning and layers off-loading over the cloud, edge, and end devices. The mutation operator and crossover operator of GA are adopted to avert the premature convergence of PSO, which distinctly reduces the system cost through enhanced population diversity of PSO. The proposed off-loading strategy is compared with benchmark solutions, and the results show that our strategy can effectively reduce the system cost of off-loading for DNN-based applications over the cloud, edge and end devices relative to the benchmarks.
机译:目前,深度神经网络(DNN)在各种应用中取得了巨大的成功。云中的DNN传统部署可能会产生一定程度的严重延迟,即将终端设备传输到云的输入数据。为了解决这个问题,通过将云中的较大层(更多数据)和较小的层组合(更少的数据量,通过将由云,边缘和最终设备组成的混合计算环境来卸载DNN层(更少的数据量)在边缘和终端设备上。混合计算环境中的一个关键问题是如何最大限度地减少系统成本,同时使用截止日期约束完成卸载层。在本文中,提出了一种使用遗传算法(GA)运算符的自适应离散粒子群优化(PSO)算法,以降低由数据传输和层执行引起的系统成本。该方法考虑DNN分区的特性和在云,边缘和终端设备上卸载的层。通过GA的突变算子和交叉运算符来避免PSO的过早收敛,这明显通过增强PSO的种群多样性来降低系统成本。将所提出的卸载策略与基准解决方案进行比较,结果表明,我们的策略可以通过云,边缘和最终设备相对于基准,有效地降低基于DNN的基于DNN的应用程序的系统成本。

著录项

  • 来源
    《IEEE transactions on industrial informatics》 |2020年第8期|5456-5466|共11页
  • 作者单位

    Fujian Normal Univ Coll Phys & Energy Fujian Prov Key Lab Quantum Manipulat & New Energ Fuzhou 350117 Peoples R China|Fujian Prov Collaborat Innovat Ctr Optoelect Semi Xiamen 361005 Peoples R China|Fujian Prov Univ Engn Res Ctr Big Data Applicat Private Hlth Med Putian 351100 Fujian Peoples R China|Fujian Prov Collaborat Innovat Ctr Adv High Field Fuzhou 350117 Fujian Peoples R China;

    Fuzhou Univ Coll Math & Comp Sci Fuzhou 350118 Peoples R China|Fujian Prov Key Lab Network Comp & Intelligent In Fuzhou 350118 Peoples R China;

    Fuzhou Univ Coll Math & Comp Sci Fuzhou 350118 Peoples R China|Fujian Prov Key Lab Network Comp & Intelligent In Fuzhou 350118 Peoples R China;

    Fuzhou Univ Coll Math & Comp Sci Fuzhou 350118 Peoples R China|Fujian Prov Key Lab Network Comp & Intelligent In Fuzhou 350118 Peoples R China;

    Fuzhou Univ Coll Math & Comp Sci Fuzhou 350118 Peoples R China|Fujian Prov Key Lab Network Comp & Intelligent In Fuzhou 350118 Peoples R China;

    Nanjing Univ Sci & Technol Sch Elect & Opt Engn Nanjing 210094 Peoples R China|Natl Res Tomsk Polytech Univ Sch Comp Sci & Robot Tomsk 634050 Russia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; cost-driven off-loading; deep neural networks (DNNs); edge computing; workflow scheduling;

    机译:云计算;成本驱动的非加载;深神经网络(DNN);边缘计算;工作流程调度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号