首页> 外文期刊>IEEE transactions on industrial informatics >Fv-SVM-Based Wall-Thickness Error Decomposition for Adaptive Machining of Large Skin Parts
【24h】

Fv-SVM-Based Wall-Thickness Error Decomposition for Adaptive Machining of Large Skin Parts

机译:基于FV-SVM的壁厚误差分解,适用于大型皮肤部件的自适应加工

获取原文
获取原文并翻译 | 示例

摘要

Large skin parts play an important role in the aerospace industry. The wall thickness of the machined pocket in the skin part needs to be strictly controlled to ensure the transport capacity and structural strength. The wall-thickness accuracy is generally decreased by various factors, such as the shaping error of the workpiece blank, fixing error, machine tool error, and deformation caused by cutting force or internal stress. These factors are usually inevitable and stochastic due to the extremely weak rigidity and easy-to-deflect characteristics of the large skin parts. To ensure the wall-thickness accuracy, a fuzzy v-support vector machine (Fv-SVM)-based wall-thickness error decomposition-method is proposed. The wall-thickness errors, which are monitored in the cutting process, are decomposed into spatial-related errors and time-related errors. The Fv-SVM-based decomposition method with the principle of spatial statistical analysis is a data-driven approach for intelligent manufacturing. The data-driven method can consider all factors that affect the wall-thickness accuracy, while the model-driven method usually only considers one factor, such as the workpiece deformation or fixing error. After decomposition, the spatial-related wall-thickness error is offline compensated, and the time-related wall-thickness error is compensated by using a real-time strategy. The novel method can be applied to complex tool paths. The cutting experiment of rectangular pockets in a large skin panel was conducted to verify the effectiveness of the proposed method. The wall-thickness accuracy can be improved to 0.05 mm for the workpiece with only 2 mm thickness.
机译:大型皮肤部件在航空航天工业中发挥着重要作用。需要严格控制皮肤部件中加工口袋的壁厚,以确保运输能力和结构强度。各种因素通常降低壁厚精度,例如工件坯料的成形误差,固定误差,机床误差和由切割力或内应力引起的变形。由于大型刚性和大型皮肤部件的易于偏转特性,这些因素通常是不可避免的和随机性的。为确保壁厚精度,提出了一种模糊V-Support载体机(FV-SVM)基础的壁厚误差分解方法。在切割过程中监视的壁厚误差被分解成空间相关的误差和时间相关的错误。基于FV-SVM的分解方法具有空间统计分析原理是一种用于智能制造的数据驱动方法。数据驱动方法可以考虑影响壁厚精度的所有因素,而模型驱动方法通常仅考虑一个因素,例如工件变形或定影误差。在分解之后,空间相关的壁厚误差是离线补偿,并且通过使用实时策略来补偿时间相关的壁厚误差。新方法可以应用于复杂的刀具路径。进行了大型皮肤板中矩形口袋的切割实验,以验证所提出的方法的有效性。壁厚精度可以提高到仅有2mm厚度的工件的0.05mm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号