首页> 外文学位 >Example-Based Parameterization of Linear Blend Skinning for Skinning Decomposition (EP-LBS)
【24h】

Example-Based Parameterization of Linear Blend Skinning for Skinning Decomposition (EP-LBS)

机译:基于示例的线性混合蒙皮参数化以实现蒙皮分解(EP-LBS)

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents Example-based Parameterization of Linear Blend Skinning for Skinning Decomposition (EP-LBS), a unified and robust method for using example data to simplify and improve the development and parameterization of high quality 3D models for animation. Animation and three-dimensional (3D) computer graphics have quickly become a popular medium for education, entertainment and scientific simulation. In addition to film, gaming and research applications, recent advancements in augmented reality (AR) and virtual reality (VR) are driving additional demand for 3D content. However, the success of graphics in these arenas depends greatly on the efficiency of model creation and the realism of the animation or 3D image.;A common method for figure animation is skeletal animation using linear blend skinning (LBS). In this method, vertices are deformed based on a weighted sum of displacements due to an embedded skeleton. This research addresses the problem that LBS animation parameter computation, including determining the rig (the skeletal structure), identifying influence bones (which bones influence which vertices), and assigning skinning weights (amounts of influence a bone has on a vertex), is a tedious process that is difficult to get right. Even the most skilled animators must work tirelessly to design an effective character model and often find themselves repeatedly correcting flaws in the parameterization. Significant research, including the use of example-data, has focused on simplifying and automating individual components of the LBS deformation process and increasing the quality of resulting animations. However, constraints on LBS animation parameters makes automated analytic computation of the values equally as challenging as traditional 3D animation methods. Skinning decomposition is one such method of computing LBS animation LBS parameters from example data. Skinning decomposition challenges include constraint adherence and computationally efficient determination of LBS parameters.;The EP-LBS method presented in this thesis utilizes example data as input to a least-squares non-linear optimization process. Given a model as a set of example poses captured from scan data or manually created, EP-LBS institutes a single optimization equation that allows for simultaneous computation of all animation parameters for the model. An iterative clustering methodology is used to construct an initial parameterization estimate for this model, which is then subjected to non-linear optimization to improve the fitting to the example data. Simultaneous optimization of weights and joint transformations is complicated by a wide range of differing constraints and parameter interdependencies. To address interdependent and conflicting constraints, parameter mapping solutions are presented that map the constraints to an alternative domain more suitable for nonlinear minimization. The presented research is a comprehensive, data-driven solution for automatically determining skeletal structure, influence bones and skinning weights from a set of example data. Results are presented for a range of models that demonstrate the effectiveness of the method.
机译:本文提出了基于示例的线性混合蒙皮分解参数化(EP-LBS),这是一种使用示例数据简化和改进动画3D模型的开发和参数化的统一而可靠的方法。动画和三维(3D)计算机图形已迅速成为教育,娱乐和科学模拟的流行媒介。除了电影,游戏和研究应用程序之外,增强现实(AR)和虚拟现实(VR)的最新发展正在推动对3D内容的额外需求。然而,这些领域中图形的成功很大程度上取决于模型创建的效率以及动画或3D图像的真实性。图形动画的一种常见方法是使用线性混合蒙皮(LBS)的骨骼动画。在这种方法中,顶点是基于嵌入骨架的位移的加权总和而变形的。这项研究解决了LBS动画参数计算的问题,包括确定装备(骨骼结构),识别影响骨骼(哪些骨骼影响哪些顶点)以及分配蒙皮权重(骨骼对顶点的影响量)。繁琐的过程很难正确解决。即使是最熟练的动画师也必须孜孜不倦地设计有效的角色模型,并经常发现自己不断纠正参数设置中的缺陷。包括使用示例数据在内的大量研究都集中于简化和自动化LBS变形过程的各个组成部分,并提高最终动画的质量。但是,LBS动画参数的约束使得值的自动分析计算与传统3D动画方法一样具有挑战性。蒙皮分解是一种从示例数据中计算LBS动画LBS参数的方法。蒙皮分解挑战包括约束遵守和LBS参数的计算有效确定。本文中提出的EP-LBS方法利用示例数据作为最小二乘非线性优化过程的输入。给定一个模型作为从扫描数据中捕获或手动创建的一组示例姿势,EP-LBS会建立一个单个优化方程,该方程可同时计算该模型的所有动画参数。迭代聚类方法用于构造此模型的初始参数化估计,然后对其进行非线性优化以改善对示例数据的拟合。权重和联合变换的同时优化由于各种不同的约束和参数相互依赖性而变得很复杂。为了解决相互依赖和冲突的约束,提出了参数映射解决方案,将约束映射到更适合于非线性最小化的替代域。提出的研究是一种全面的,数据驱动的解决方案,用于从一组示例数据中自动确定骨骼结构,影响骨骼和蒙皮权重。给出了一系列模型的结果,这些结果证明了该方法的有效性。

著录项

  • 作者

    Hopkins, Kayra M.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号