首页> 外文期刊>IEEE transactions on industrial informatics >Indoor Multifloor Localization Method Based on WiFi Fingerprints and LDA
【24h】

Indoor Multifloor Localization Method Based on WiFi Fingerprints and LDA

机译:基于WiFi指纹和LDA的室内多层定位方法

获取原文
获取原文并翻译 | 示例

摘要

Indoor localization has elicited increasing attention because it has been widely used in indoor location-based services. At present, many complex scenarios for indoor localization require position estimation not only in single-floor environments but also in multifloor ones. However, existing works exhibit certain limitations in solving the problems that involve high computational complexity and floor localization accuracy. In this paper, a multifloor identification system based on WiFi fingerprint database is designed to address these issues. This floor identification system is divided into offline and online phases. In the offline phase, a localization fingerprint database is built based on WiFi nodes and a multifloor identification model is proposed based on linear discriminant analysis (LDA), called MA_LDA. In the online phase, the final floor number is determined, and the trained model is combined with the majority voting mechanism. After determining the floor number, an algorithm based on the k-nearest neighbor (KNN), called LL_KNN, is proposed to obtain the location information of a target on the floor. Real experiment results show that our system can identify the floor number by using only a little WiFi node fingerprint information rather than all the nodes to reduce the computational complexity. It works efficiently and achieves high fault-tolerance performance compared with existing approaches in locating targets in a multifloor environment.
机译:由于室内定位已广泛用于基于室内位置的服务,因此引起了越来越多的关注。当前,许多用于室内定位的复杂场景不仅在单层环境中而且在多层环境中都需要位置估计。然而,现有的工作在解决涉及高计算复杂度和地板定位精度的问题时显示出一定的局限性。为了解决这些问题,本文设计了一种基于WiFi指纹数据库的多层身份识别系统。该楼层识别系统分为离线阶段和在线阶段。在离线阶段,基于WiFi节点构建本地化指纹数据库,并基于线性判别分析(LDA)提出了多层识别模型,称为MA_LDA。在在线阶段,确定最终发言权,然后将经过训练的模型与多数投票机制结合起来。在确定楼层数之后,提出了一种基于k最近邻(KNN)的算法LL_KNN,以获取目标在楼层上的位置信息。真实的实验结果表明,我们的系统仅通过使用少量WiFi节点指纹信息即可识别楼层编号,而无需使用所有节点,从而降低了计算复杂度。与在多层环境中定位目标的现有方法相比,它可以高效地工作并获得较高的容错性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号