首页> 外文期刊>IEEE transactions on industrial informatics >Optimized Adaptive Nonlinear Tracking Control Using Actor–Critic Reinforcement Learning Strategy
【24h】

Optimized Adaptive Nonlinear Tracking Control Using Actor–Critic Reinforcement Learning Strategy

机译:使用Actor-Critic强化学习策略优化的自适应非线性跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an optimized tracking control approach using neural network (NN) based reinforcement learning (RL) for a class of nonlinear dynamic systems, which requires both tracking and optimizing to be performed simultaneously. Generally, for obtaining optimal control solution, Hamilton-Jacobi-Bellman equation is expected to be solvable, but, owing to strong nonlinearity, the equation is solved difficultly or even impossibly by analytical methods. Therefore, adaptive NN approximation based RL is usually considered. In the optimized control design, for driving output state following to the desired trajectory, an error term is split from optimal performance index function, and then both actor and critic NNs are built to perform RL algorithm. Actor NN aims to execute control behaviors, and critic NN aims to appraise control performance and make feedback to actor. The proof of stability concludes that the desired control performances are obtained. A numerical simulation is designed and implemented, and the desired results are shown.
机译:针对一类非线性动态系统,本文提出了一种基于神经网络(NN)的强化学习(RL)的优化跟踪控制方法,该方法需要同时进行跟踪和优化。通常,为了获得最佳控制解,可以解决Hamilton-Jacobi-Bellman方程,但是由于强烈的非线性,该方程很难用解析方法求解,甚至不可能求解。因此,通常考虑基于自适应NN近似的RL。在优化的控制设​​计中,为了驱动输出状态遵循所需的轨迹,将误差项与最佳性能指标函数分开,然后构造参与者和评论者NN来执行RL算法。演员NN旨在执行控制行为,评论家NN旨在评估控制性能并向演员反馈。稳定性证明可以得出所需的控制性能。设计并实现了数值模拟,并显示了所需的结果。

著录项

  • 来源
    《IEEE transactions on industrial informatics》 |2019年第9期|4969-4977|共9页
  • 作者单位

    Binzhou Univ Coll Sci Binzhou 256600 Peoples R China|Binzhou Univ IAET Binzhou 256600 Peoples R China;

    Univ Macau Dept Comp & Informat Sci Fac Sci & Technol Macau 99999 Peoples R China|Dalian Maritime Univ Dalian 116026 Peoples R China|Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100080 Peoples R China;

    Natl Univ Singapore Dept Elect & Comp Engn Singapore 117576 Singapore|Qingdao Univ Inst Future Qingdao 266071 Shandong Peoples R China;

    Shandong Univ Sci & Technol Math & Syst Sci Coll Qingdao 266590 Shandong Peoples R China;

    Southwest Minzu Univ Key Lab Comp Syst State Ethn Affairs Commiss Chengdu 610041 Sichuan Peoples R China|Southwest Minzu Univ Sch Comp Sci & Technol Chengdu 610041 Sichuan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lyapunov function; neural networks (NNs); nonlinear systems; optimized tracking control; reinforcement learning (RL) of actor-critic architecture;

    机译:Lyapunov函数;神经网络(NNs);非线性系统优化的跟踪控制;演员批评建筑的强化学习(RL);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号