首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Industrial IoT Data Scheduling Based on Hierarchical Fog Computing: A Key for Enabling Smart Factory
【24h】

Industrial IoT Data Scheduling Based on Hierarchical Fog Computing: A Key for Enabling Smart Factory

机译:基于分层雾计算的工业物联网数据调度:智能工厂的关键

获取原文
获取原文并翻译 | 示例

摘要

Industry 4.0 or industrial Internet of things (IIoT) has become one of the most talked-about industrial business concepts in recent years. Thus, to efficiently integrate Internet of things technology into industry, the collected and sensed data from IIoT need to be scheduled in real-time constraints, especially for big factories. To this end, we propose in this paper a hierarchical fog servers' deployment at the network service layer across different tiers. Using probabilistic analysis models, we prove the efficiency of the proposed hierarchical fog computing compared with the flat architecture. In this paper, IIoT data and requests are divided into both high priority and low priority requests; the high priority requests are urgent/emergency demands that need to be scheduled rapidly. Therefore, we use two-priority queuing model in order to schedule and analyze IIoT data. Finally, we further introduce a workload assignment algorithm to offload peak loads over higher tiers of the fog hierarchy. Using realistic industrial data from Bosch group, the benefits of the proposed architecture compared to the conventional flat design are proved using various performance metrics and through extensive simulations.
机译:近年来,工业4.0或工业物联网(IIoT)已成为最受关注的工业业务概念之一。因此,为了将物联网技术有效地集成到行业中,需要对IIoT收集和感知的数据进行实时调度,特别是对于大型工厂。为此,我们在本文中提出了分层雾服务器在网络服务层上跨不同层的部署。使用概率分析模型,我们证明了与平面架构相比,所提出的分层雾计算的效率。在本文中,IIoT数据和请求分为高优先级请求和低优先级请求。高优先级请求是需要快速安排的紧急/紧急需求。因此,我们使用两优先级排队模型来调度和分析IIoT数据。最后,我们进一步介绍了一种工作负载分配算法,以减轻雾层次结构更高层上的峰值负载。使用来自博世集团的实际工业数据,通过各种性能指标和广泛的仿真,证明了与常规平面设计相比,拟议架构的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号