首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart Factory
【24h】

Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart Factory

机译:雾计算可用于智能工厂中的能源感知负载平衡和调度

获取原文
获取原文并翻译 | 示例

摘要

Due to the development of modern information technology, the emergence of the fog computing enhances equipment computational power and provides new solutions for traditional industrial applications. Generally, it is impossible to establish a quantitative energy-aware model with a smart meter for load balancing and scheduling optimization in smart factory. With the focus on complex energy consumption problems of manufacturing clusters, this paper proposes an energy-aware load balancing and scheduling (ELBS) method based on fog computing. First, an energy consumption model related to the workload is established on the fog node, and an optimization function aiming at the load balancing of manufacturing cluster is formulated. Then, the improved particle swarm optimization algorithm is used to obtain an optimal solution, and the priority for achieving tasks is built toward the manufacturing cluster. Finally, a multiagent system is introduced to achieve the distributed scheduling of manufacturing cluster. The proposed ELBS method is verified by experiments with candy packing line, and experimental results showed that proposed method provides optimal scheduling and load balancing for the mixing work robots.
机译:由于现代信息技术的发展,雾计算的出现增强了设备的计算能力,并为传统工业应用提供了新的解决方案。通常,不可能用智能电表建立定量的能量感知模型来实现智能工厂中的负载平衡和调度优化。针对制造集群的复杂能耗问题,本文提出了一种基于雾计算的能量感知负载均衡与调度方法。首先,在雾节点上建立了与工作量相关的能耗模型,并针对制造集群的负载均衡制定了优化函数。然后,使用改进的粒子群优化算法获得最优解,并将完成任务的优先级构建到制造集群。最后,引入了多智能体系统来实现制造集群的分布式调度。通过糖果包装生产线的实验验证了该方法的有效性,实验结果表明该方法为搅拌作业机器人提供了最优的调度和负载均衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号