首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Cost-Efficient Deployment of Fog Computing Systems at Logistics Centers in Industry 4.0
【24h】

Cost-Efficient Deployment of Fog Computing Systems at Logistics Centers in Industry 4.0

机译:在工业4.0的物流中心中经济高效地部署雾计算系统

获取原文
获取原文并翻译 | 示例

摘要

In Industry 4.0, the factories become increasingly smart and efficient through intelligent cyber-physical systems based on the deployment of Internet of Things (IoT), mobile devices, and cloud computing systems. In practice, the cloud computing system in a factory is managed in a centralized way, and hence may not afford heavy computing loads from thousands of IoT devices in the factory. An approach to address this issue is to deploy fog/edge computing resources nearby IoT devices in a distributed way to provide real-time computing responses on sites. This paper investigates deployment of an intelligent computing system consisting of a cloud center, gateways, fog devices, edge devices, and sensors attached to facilities in a logistics center. Except for locations of the cloud center and sensors that have been determined based on the factory layout, this paper establishes an integer programming model for deploying gateways, fog devices, edge devices in their respective potential sites, so that the total installation cost is minimized, under the constraints of maximal demand capacity, maximal latency time, coverage, and maximal capacity of devices. This paper further solves this NP-hard facility location problem by a metaheuristic algorithm that incorporates discrete monkey algorithm to search for good quality solutions and genetic algorithm to increase computational efficiency. Simulation verifies high performance of the proposed algorithm in deployment of intelligent computing systems in moderate-scale instances of intelligent logistics centers.
机译:在工业4.0中,通过基于物联网(IoT),移动设备和云计算系统的部署的智能网络物理系统,工厂变得越来越智能和高效。实际上,工厂中的云计算系统是以集中方式进行管理的,因此可能无法承受工厂中成千上万个IoT设备的沉重计算负载。解决此问题的一种方法是以分布式方式在IoT设备附近部署雾/边缘计算资源,以在站点上提供实时计算响应。本文研究了由云中心,网关,雾设备,边缘设备和连接到物流中心设施的传感器组成的智能计算系统的部署。除了根据工厂布局确定云中心和传感器的位置外,本文建立了整数编程模型,用于在各自的潜在站点中部署网关,雾设备,边缘设备,从而将总安装成本降至最低,在最大需求容量,最大等待时间,覆盖范围和最大设备容量的约束下。本文通过一种元启发式算法进一步解决了该NP硬设施定位问题,该算法结合了离散猴子算法以寻找优质解决方案,并采用遗传算法来提高计算效率。仿真验证了该算法在智能物流中心的中等规模实例中部署智能计算系统的高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号