首页> 外文期刊>IEEE Transactions on Industrial Electronics >Reuse of existing design information in the development of new electronic PTC devices via a neural network approach
【24h】

Reuse of existing design information in the development of new electronic PTC devices via a neural network approach

机译:通过神经网络方法在开发新的电子PTC设备中重用现有设计信息

获取原文
获取原文并翻译 | 示例

摘要

Burning events and voltage endurance are two important aspects that need to be predicted during the design and development stage of a new series of electronic positive temperature coefficient (PTC) devices. In this paper, these problems are identified by experiments conducted on well-developed devices, and are resolved by improving the resistance-temperature characteristics of the PTC devices in order to overdamp, underdamp, or critically damp high-current/high-voltage surges. The use of neural networks is proposed, to learn the empirical or experimental design information that already exists, and then to predict the occurrence of burning events and the voltage endurance of new PTC devices at the design/development stage. Two predictive schemes are presented separately, for burning events and for voltage endurance, where the training patterns for the desired outputs are either generated from empirical formulae or collected from experiments on already-developed PTC devices. The predicted results are discussed against the experimental results that are available, and an overall concept is finally given for the integration of the neural predictive models into the computer-aided design/computer-aided engineering system used for the PTC devices.
机译:燃烧事件和耐压性是在新系列电子正温度系数(PTC)设备的设计和开发阶段需要预测的两个重要方面。在本文中,这些问题已通过在先进设备上进行的实验进行了识别,并通过改善PTC器件的电阻-温度特性来解决,以防止过电流,过电流或严重阻尼大电流/高压浪涌。提出了使用神经网络的方法,以学习已经存在的经验或实验设计信息,然后在设计/开发阶段预测燃烧事件的发生和新PTC设备的耐压性。分别针对燃烧事件和耐压性提出了两种预测方案,其中针对期望输出的训练模式可以通过经验公式生成,也可以从已经开发的PTC设备上的实验中收集。相对于可用的实验结果讨论了预测结果,最后给出了将神经预测模型集成到PTC设备使用的计算机辅助设计/计算机辅助工程系统中的总体概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号