首页> 外文期刊>Industrial Electronics, IEEE Transactions on >An Adaptive Neural-Fuzzy Approach for Object Detection in Dynamic Backgrounds for Surveillance Systems
【24h】

An Adaptive Neural-Fuzzy Approach for Object Detection in Dynamic Backgrounds for Surveillance Systems

机译:监视系统动态背景下目标检测的自适应神经模糊方法

获取原文
获取原文并翻译 | 示例

摘要

Object detection is a fundamental aspect in surveillance systems. Although several works aimed at detecting objects in video sequences have been reported, many are not tolerant to dynamic background or require complex computation in addition to manual parameter adjustments. This paper proposes an adaptive object detection method to work in dynamic backgrounds without human intervention. The proposed method is based on a neural-fuzzy model. The neural stage, based on a one-to-one self-organizing map (SOM) architecture, deals with the dynamic background for object detection as well as shadow elimination. The fuzzy inference Sugeno system mimics human behavior to automatically adjust the main parameters involved in the SOM detection model, making the system independent of the scenario. Results of the model over real video scenes show its robustness. These findings are comparable to the results obtained with human intervention to define the parameters of the model. A quantitative comparison with methods reported in the literature is also provided to show the performance of the system.
机译:对象检测是监视系统中的基本方面。尽管已经报道了一些旨在检测视频序列中的对象的工作,但是除了手动参数调整之外,许多工作都不容许动态背景或需要复杂的计算。提出了一种在动态背景下无需人工干预的自适应目标检测方法。所提出的方法基于神经模糊模型。神经阶段基于一对一的自组织映射(SOM)架构,处理动态背景以进行对象检测以及消除阴影。模糊推理Sugeno系统模仿人类行为,以自动调整SOM检测模型中涉及的主要参数,从而使系统独立于场景。该模型在真实视频场景上的结果表明了其健壮性。这些发现与人工干预定义模型参数所获得的结果相当。还提供了与文献报道的方法的定量比较,以显示系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号