...
首页> 外文期刊>IEEE Transactions on Industrial Electronics >Dynamic Neural Networks for Motion-Force Control of Redundant Manipulators: An Optimization Perspective
【24h】

Dynamic Neural Networks for Motion-Force Control of Redundant Manipulators: An Optimization Perspective

机译:冗余机械手运动力控制动态神经网络:优化视角

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Accurate position-force control is a core and challenging problem in robotics, especially for manipulators with redundant degrees of freedom (DOFs). For example, trajectory tracking-based control usually fails for grinding robots due to intolerable impact forces imposed onto the end effectors. The main difficulties lie in the coupling of motion and contact force, redundancy resolution, physical constraints, etc. In this article, we propose a novel motion-force control strategy in the framework of projection recurrent neural networks (RNN). Tracking error and contact force are described in orthogonal spaces, respectively, and by selecting minimizing joint torque as secondary task, the control problem is formulated as a quadratic-programming (QP) problem under multiple constraints. In order to obtain real-time optimization of joint toque, which is nonconvex relative to joint angles, the original QP is reconstructed in the velocity level, where the original objective function is replaced by its time derivative. Then, a dynamic neural network, which is convergence provable is established to solve the modified QP problem online. This work generalizes projection RNN-based position control of manipulators to that of position-force control, which opens a new avenue to shift position-force control of manipulators from pure control perspective to cross design with both convergence and optimality consideration. Numerical and experimental results show that the proposed scheme achieves accurate position-force control, and is capable of handling inequality constraints such as joint angular, velocity, and torque limitations, simultaneously, consumption of joint torque can be decreased effectively.
机译:准确的位置力控制是机器人中的核心和具有挑战性的问题,特别是对于具有冗余自由度(DOF)的操纵器。例如,基于轨迹跟踪的控制通常由于施加到最终效应器上的无法耐用的冲击力而导致机器人失败。主要困难位于运动和接触力,冗余分辨率,物理限制等耦合中,我们在投影复发性神经网络(RNN)框架中提出了一种新的运动控制策略。在正交空格中分别描述了跟踪误差和接触力,并且通过选择最小化关节扭矩作为二次任务,在多个约束下将控制问题称为二次编程(QP)问题。为了获得相对于关节角度的非凸起的关节扭矩的实时优化,原始QP在速度水平中重建,其中原始物镜函数被其时间衍生物更换。然后,建立了一种动态神经网络,该网络是可提供的收敛,以解决在线修改的QP问题。这项工作将基于投影的机械手的位置控制概括为定位力控制的位置控制,这使得一个新的途径从纯粹的控制视角来从纯粹的控制视角移动操纵器的位置力控制,以伴随收敛和最优性考虑。数值和实验结果表明,该方案实现了精确的定位力控制,并且能够处理诸如关节角度,速度和扭矩限制的不等式约束,同时可以有效地降低关节扭矩的消耗。

著录项

  • 来源
    《IEEE Transactions on Industrial Electronics》 |2021年第2期|1525-1536|共12页
  • 作者单位

    Guangdong Inst Intelligent Mfg Guangdong Key Lab Modern Control Technol Guangzhou 210094 Peoples R China|Foshan Trico Intelligent Robot Technol Co Ltd Foshan 510360 Peoples R China;

    Foshan Trico Intelligent Robot Technol Co Ltd Foshan 510360 Peoples R China|Swansea Univ Sch Engn Swansea SA2 8PP W Glam Wales;

    Guangdong Inst Intelligent Mfg Guangdong Key Lab Modern Control Technol Guangzhou 210094 Peoples R China|Foshan Trico Intelligent Robot Technol Co Ltd Foshan 510360 Peoples R China;

    Guangdong Inst Intelligent Mfg Guangdong Key Lab Modern Control Technol Guangzhou 210094 Peoples R China;

    Guangdong Inst Intelligent Mfg Guangdong Key Lab Modern Control Technol Guangzhou 210094 Peoples R China;

    Guangdong Univ Technol Sch Electromech Engn Biomimet & Intelligent Robot Lab BIRL Guangzhou 210094 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dynamic neural network; joint torque optimization; motion-force control; redundancy resolution;

    机译:动态神经网络;联合扭矩优化;运动力控制;冗余分辨率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号