首页> 外文期刊>IEEE Transactions on Industrial Electronics >Using Multiple-Feature-Spaces-Based Deep Learning for Tool Condition Monitoring in Ultraprecision Manufacturing
【24h】

Using Multiple-Feature-Spaces-Based Deep Learning for Tool Condition Monitoring in Ultraprecision Manufacturing

机译:使用基于多特征空间的深度学习进行超精密制造中的工具状态监控

获取原文
获取原文并翻译 | 示例

摘要

Tool condition monitoring is critical in ultraprecision manufacturing in order to optimize the performance of the overall process, while maintaining the desired part quality. Recently, deep learning has been successfully applied to numerous classification tasks in manufacturing, often to forecast part quality. In this paper, a novel deep learning data-driven modeling framework is presented, which includes a fusion of multiple stacked sparse autoencoders for tool condition monitoring in ultraprecision machining. The proposed computational framework consists of two main structures. First, a training model that is designed with the ability to process multiple parallel feature spaces to learn the lower-level features. Second, a feature fusion structure that is used to learn the higher-level features and associations to tool wear. To achieve this learning structure, a modified loss function is utilized that enhances the feature extraction and classification tasks. A dataset from a real manufacturing process is used to demonstrate the performance of the proposed framework. Experimental results and simulations show that the proposed method successfully classifies the ultraprecision machining case study with over 96% accuracy, while also outperforming comparable methodologies.
机译:刀具状态监视对于超精密制造至关重要,以便优化整个过程的性能,同时保持所需的零件质量。最近,深度学习已成功地应用于制造中的众多分类任务,通常可以预测零件质量。在本文中,提出了一种新颖的深度学习数据驱动的建模框架,其中包括多个堆叠的稀疏自动编码器的融合,用于超精密加工中的刀具状态监控。所提出的计算框架由两个主要结构组成。首先,设计一种训练模型,该模型具有处理多个并行要素空间以学习较低级要素的能力。其次,特征融合结构用于学习更高级的特征以及与刀具磨损的关联。为了实现这种学习结构,利用了改进的损失函数来增强特征提取和分类任务。实际制造过程中的数据集用于演示所提出框架的性能。实验结果和仿真结果表明,所提出的方法成功地将超精密加工案例进行了分类,准确率超过96%,同时也优于同类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号