首页> 外文期刊>The imaging science journal >A novel approach to image quality assessment in iris recognition systems
【24h】

A novel approach to image quality assessment in iris recognition systems

机译:虹膜识别系统中图像质量评估的新方法

获取原文
获取原文并翻译 | 示例

摘要

With increasing needs in security systems, iris recognition is an important technique as one of the most reliable solutions for biometrics-based identification systems. However, not all of the iris images acquired from the device are in-focus and sharp enough for recognition. Thus, the poor quality of iris images has serious influence on the accuracy of iris recognition. Sometimes these images are not good enough due to a variety of factors: defocus blur, motion blur, eyelid occlusion and eyelash occlusion. This paper presents an approach for quality assessment of iris images, which can select the high quality iris images from the image sequences to be used in iris recognition systems. First, the gradient information of the iris regions (64 × 64) adjoining the pupil on the right and left sides is calculated to distinguish the blurred images from the in-focus images. Next, the valid iris regions are employed to discriminate between the occluded images and useful images. We present underlying theory as well as experimental results from both the CASIA iris database and the database provided for the iris challenge evaluation (ICE). The results show that this evaluation approach can actually reflect the real quality of iris images and significantly improve the overall performance of the iris recognition systems.
机译:随着安全系统需求的增长,虹膜识别作为一种重要的技术成为基于生物识别技术的最可靠解决方案之一。但是,并非从设备获取的所有虹膜图像都聚焦清晰且足够清晰以进行识别。因此,虹膜图像质量差对虹膜识别的准确性有严重影响。有时由于多种因素,这些图像不够好:散焦模糊,运动模糊,眼睑闭塞和睫毛闭塞。本文提出了一种虹膜图像质量评估方法,可以从虹膜识别系统中使用的图像序列中选择高质量的虹膜图像。首先,计算左右两侧瞳孔附近的虹膜区域(64×64)的梯度信息,以将模糊图像与对焦图像区分开。接下来,采用有效的虹膜区域来区分遮挡图像和有用图像。我们提供了来自CASIA虹膜数据库和虹膜挑战评估(ICE)的数据库的基础理论和实验结果。结果表明,这种评估方法实际上可以反映虹膜图像的真实质量,并显着提高虹膜识别系统的整体性能。

著录项

  • 来源
    《The imaging science journal》 |2010年第3期|P.136-145|共10页
  • 作者单位

    Department of Electrical Engineering, Chinese Naval Academy, Kaohsiung, Taiwan;

    rnDepartment of Computer Science and Information Engineering, Yuanpei University, Hsinchu, Taiwan;

    rnDepartment of Computer Science and Communications Engineering, Tahwa Institute of Technology, Hsinchu 307, Taiwan;

    rnDepartment of Computer Science and Information Engineering, Ching Yun University, Jung-Li, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biometrics; iris recognition; iris image quality assessment;

    机译:生物识别;虹膜识别;虹膜图像质量评估;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号