首页> 外文期刊>Image and Vision Computing >Complete description of multiple line segments using the Hough transform
【24h】

Complete description of multiple line segments using the Hough transform

机译:使用霍夫变换完整描述多个线段

获取原文
获取原文并翻译 | 示例

摘要

The Hough transform (HT) is commonly used in machine vision applications for detecting discontinuous patterns in noisy images. The process of using the HT to detect lines in an image involves the computation of the HT for the entire image, accumulating votes in an accumulator array and searching the array for peaks which hold information of potential lines present in the input image. The peaks provide only the length of the normal to the line and the angle that the normal makes with the x-axis. They do not provide any information regarding the length, position or end points of the line segments. However, the butterfly shaped[ 1 ] spread of votes in the accumulator array, generated by the process of peak formation, holds vital information like the length and position of the input line segment. Some authors[2] have used this property to develop an algorithm to determine the coordinates of the end points, the length, and the normal parameters of straight lines. A limitation of this method, making it unsuitable for application to a real machine vision problem, is that it would yield erroneous results if applied to an image consisting of anything more than a single line segment. Moreover, the precision of this algorithm is dependent on the sharpness of the peak. In this paper, new techniques which address the above mentioned shortcomings have been described. This paper details the method developed to provide complete line segment description for an image consisting of multiple line segments. In addition, the developed techniques are more robust and accurate than the previously proposed methods as they do not depend upon the sharpness of the peak.
机译:霍夫变换(HT)通常用于机器视觉应用中,以检测嘈杂图像中的不连续图案。使用HT检测图像中的线的过程涉及整个图像的HT的计算,在累加器阵列中累积选票并在该阵列中搜索峰值,这些峰值包​​含输入图像中存在的潜在线的信息。峰值仅提供线法线的长度以及法线与x轴的夹角。它们不提供有关线段的长度,位置或终点的任何信息。但是,通过峰形成过程生成的累积器阵列中的蝶形[1]投票分布包含重要信息,如输入线段的长度和位置。一些作者[2]利用此属性开发了一种算法,可以确定端点的坐标,长度和直线的法线参数。这种方法的局限性使其不适用于实际的机器视觉问题,如果将其应用于包含多于单个线段的图像,则会产生错误的结果。此外,该算法的精度取决于峰的清晰度。在本文中,已经描述了解决上述缺点的新技术。本文详细介绍了为包含多个线段的图像提供完整线段描述的方法。另外,由于所开发的技术不依赖于峰的锐度,因此它们比以前提出的方法更健壮和准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号