首页> 外文期刊>Image and Vision Computing >R~4 Det: Refined single-stage detector with feature recursion and refinement for rotating object detection in aerial images
【24h】

R~4 Det: Refined single-stage detector with feature recursion and refinement for rotating object detection in aerial images

机译:R〜4 det:精制的单级探测器,具有特征递归和细化,用于在空中图像中旋转物体检测

获取原文
获取原文并翻译 | 示例

摘要

The detection of objects with multi-orientations and multi-scales in aerial images is receiving increasing attention because of numerous useful applications in computer vision, image understanding, satellite remote sensing and surveillance. However, such detection can be exceedingly challenging because of a birds eye view, multiscale rotating objects with large aspect ratios, dense distributions and extremely imbalanced categories. Despite the considerable progress that has been made, detection performance falls considerably below that required for real-world applications. In this paper, we propose an accurate and fast end-to-end detector to address the aforementioned challenges. Our contributions are threefold. First, inspired by the looking and thinking twice mechanism, recursive neural networks and the DetectoRS detector, we propose a novel encoder-decoder based architecture by introducing the recursive feature pyramid into a single-stage object detection framework. The improved backbone network can generate increasingly powerful multi-scale representations for classification and regression. Second, we propose a refined single-stage detectorwith feature recursion and refinement for rotating objects. Third, we use instance balance to improve focal loss, thereby optimizing the loss in the correct direction. Extensive experiments on two challenging aerial image object detection public datasets, DOTA and HRSC2016, show that the proposed R4Det detector achieves the state-of-the-art accuracy while running very fast. Moreover, further experiments show that our detector is more robust to adversarial image patch attacks than the previous state-of-art detector. (c) 2020 Elsevier B.V. All rights reserved.
机译:由于计算机视觉,图像理解,卫星遥感和监视的许多有用的应用,在航天图像中检测具有多向的多向和多尺度的对象正在接受越来越多的关注。然而,由于鸟瞰图,具有大纵横比,密集分布和极其不平衡类别的鸟瞰,多尺度旋转对象,这种检测可能非常具有挑战性。尽管已经取得了相当大的进展,但实际应用需要检测性能大幅下降。在本文中,我们提出了一种准确而快速的端到端探测器来解决上述挑战。我们的贡献是三倍。首先,通过观察和思考的机制,递归神经网络和探测器检测器的灵感,我们通过将递归特征金字塔引入单级对象检测框架来提出基于新的基于编码器的解码器的架构。改进的骨干网络可以为分类和回归产生越来越强大的多尺度表示。其次,我们提出了一种精致的单级探测器,具有旋转物体的特征递归和细化。第三,我们使用实例余额来提高焦点损失,从而优化正确方向的损失。在两个具有挑战性的空中图像对象检测公共数据集,DotA和HRSC2016的广泛实验,表明所提出的R4DET检测器在非常快速地运行时实现最先进的准确性。此外,进一步的实验表明,我们的检测器比以前的最先进的探测器对抗对抗图像贴片攻击更鲁棒。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号