首页> 外文期刊>Image and Vision Computing >A novel edge-oriented framework for saliency detection enhancement
【24h】

A novel edge-oriented framework for saliency detection enhancement

机译:一种新颖的优势检测增强框架框架

获取原文
获取原文并翻译 | 示例

摘要

Mixed visual scenes and cluttered background commonly exist in natural images, which forms a challenge for saliency detection. In dealing with complex images, there are two kinds of deficiencies in the existing saliency detection methods: ambiguous object boundaries and fragmented salient regions. To address these two limitations, we propose a novel edge-oriented framework to improve the performance of existing salient detection methods. Our framework is based on two interesting insights: 1) human eyes are sensitive to the edges between foreground and background even there is hardly any difference in terms of saliency, 2) Guided by semantic integrity, human eyes tend to view a visual scene as several objects, rather than pixels or super pixels. The proposed framework consists of the following three parts. First, an edge probability map is extracted from an input image. Second, the edge-based over-segmentation is obtained by sharpening the edge probability map, which is ultilized to generate edge-regions using an edge-strength based hierarchical merge model. Finally, based on the prior saliency map generated by existing methods, the framework assigns each edge-region with a saliency value. Based on four publically available datasets, the experiments demonstrate that the proposed framework can significantly improve the detection results of existing saliency detection models, which is also superior to other state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:混合的视觉场景和杂乱的背景通常存在于自然图像中,这构成了显着性检测的挑战。在处理复杂图像时,现有的显着性检测方法中有两种缺陷:模糊的物体边界和分散的突出区域。为了解决这两个限制,我们提出了一种新颖的边缘导向框架,以提高现有突出检测方法的性能。我们的框架基于两个有趣的见解:1)人眼对前景和背景之间的边缘敏感,即使在显着性方面几乎没有任何差异,2)以语义完整为引导,人眼倾向于将视觉场景视为几个对象,而不是像素或超像素。拟议的框架包括以下三个部分。首先,从输入图像中提取边缘概率图。其次,通过锐化边缘概率图获得边缘的过分分割,该边缘概率图是使用边缘强度基于分层合并模型生成边缘区域的。最后,基于现有方法生成的现有显着性图,框架为每个边缘区域分配显着值。基于四个公开的数据集,实验表明,所提出的框架可以显着提高现有显着性检测模型的检测结果,这也优于其他最先进的方法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Image and Vision Computing》 |2019年第7期|1-12|共12页
  • 作者单位

    South China Normal Univ Sch Comp Guangzhou 510631 Guangdong Peoples R China;

    South China Normal Univ Sch Comp Guangzhou 510631 Guangdong Peoples R China|Guangdong Univ Foreign Studies Intelligent Hlth & Visual Comp Lab Guangzhou 510006 Guangdong Peoples R China;

    Guangdong Univ Foreign Studies Intelligent Hlth & Visual Comp Lab Guangzhou 510006 Guangdong Peoples R China|Guangdong Univ Foreign Studies Sch Informat Sci & Technol Guangzhou 510006 Guangdong Peoples R China;

    South China Normal Univ Sch Comp Guangzhou 510631 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Guangdong Peoples R China;

    Western Kentucky Univ Dept Comp Sci Bowling Green KY 42101 USA;

    Guilin Univ Elect Technol Sch Comp Sci & Informat Secur Guilin 541004 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Saliency detection enhancements; Visual attention; Edge probability map; Edge-region;

    机译:显着性检测增强;视觉注意;边缘概率图;边缘区域;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号