首页> 外文期刊>Image and Vision Computing >Online learning of contexts for detecting suspicious behaviors in surveillance videos
【24h】

Online learning of contexts for detecting suspicious behaviors in surveillance videos

机译:在线学习上下文以检测监视视频中的可疑行为

获取原文
获取原文并翻译 | 示例

摘要

One of the main incentives for implementing video-based surveillance systems is the urban security. During the last years, several approaches for automatic detection of suspicious events have been proposed. Those methods usually require a training stage before starting their operation. This means that previous to run time a representative dataset of interest events, that may occur in the future, must be available. Nevertheless, most real surveillance systems lack of that information, so many of those proposals results impractical.In this paper, a context online learning scheme for detecting suspicious behaviors on surveillance videos is proposed. Contextual information, which is inferred from videos of people in a scenario, allows detecting suspicious behaviors before an eventual criminal's final attack occur. The main attribute of the proposed approach is the capacity to start up its operation with a reduced training dataset. By an incremental learning process, which uses new data obtained during the online operation, the proposed scheme improves the performance over time achieving a better adaptation to conditions of each scenario.The proposed scheme was validated on two datasets. The first of them includes threats against a parked truck and its driver. The second testing dataset is composed of night assault scenes recorded in an urban environment. The experimental results demonstrate that the proposed method is able to learn incrementally from a reduced initial dataset, achieving a performance similar to batch-type systems trained with all data simultaneously and outperforming five state-of-the-art algorithms over violence detection. (C) 2019 Elsevier B.V. All rights reserved.
机译:实施基于视频的监视系统的主要动机之一是城市安全。在最近几年中,已经提出了几种用于自动检测可疑事件的方法。这些方法通常需要训练阶段才能开始操作。这意味着在运行时之前,将来可能会发生的代表性兴趣事件数据集必须可用。尽管如此,大多数真实的监视系统都缺少该信息,因此许多提议都不切实际。本文提出了一种用于检测监视视频中可疑行为的上下文在线学习方案。从场景中的人的视频中推断出的上下文信息可以在犯罪分子最终遭受最终攻击之前检测出可疑行为。提出的方法的主要属性是使用减少的训练数据集启动其操作的能力。通过使用在线操作过程中获得的新数据的增量学习过程,该方案随着时间的推移提高了性能,从而更好地适应了每种情况的条件。该方案在两个数据集上得到了验证。其中第一个包括对停放的卡车及其驾驶员的威胁。第二个测试数据集由记录在城市环境中的夜袭场景组成。实验结果表明,所提出的方法能够从减少的初始数据集中逐步学习,达到与批处理型系统相似的性能,同时对所有数据进行训练,并且在暴力检测方面优于五种最新算法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号