首页> 外文期刊>Image and Vision Computing >The challenge of simultaneous object detection and pose estimation: A comparative study
【24h】

The challenge of simultaneous object detection and pose estimation: A comparative study

机译:同时进行物体检测和姿态估计的挑战:一项比较研究

获取原文
获取原文并翻译 | 示例

摘要

Detecting objects and estimating their pose remains as one of the major challenges of the computer vision research community. There exists a compromise between localizing the objects and estimating their viewpoints. The detector ideally needs to be view-invariant, while the pose estimation process should be able to generalize towards the category-level. This work is an exploration of using deep learning models for solving both problems simultaneously. For doing so, we propose three novel deep learning architectures, which are able to perform a joint detection and pose estimation, where we gradually decouple the two tasks. We also investigate whether the pose estimation problem should be solved as a classification or regression problem, being this still an open question in the computer vision community. We detail a comparative analysis of all our solutions and the methods that currently define the state of the art for this problem. We use PASCAL3D+ and ObjectNet3D datasets to present the thorough experimental evaluation and main results. With the proposed models we achieve the state-of-the-art performance in both datasets. (C) 2018 Elsevier B.V. All rights reserved.
机译:检测物体并估计其姿势仍然是计算机视觉研究界的主要挑战之一。在定位对象和估计它们的观点之间存在折衷。理想情况下,检测器必须保持视图不变,而姿势估计过程应该能够将其推广到类别级别。这项工作是对使用深度学习模型同时解决这两个问题的探索。为此,我们提出了三种新颖的深度学习架构,它们能够执行联合检测和姿势估计,在此我们逐步将这两个任务分离。我们还研究了姿势估计问题应作为分类问题还是回归问题解决,因为这在计算机视觉社区中仍然是一个悬而未决的问题。我们详细介绍了所有解决方案和方法的比较分析,这些解决方案和方法目前定义了该问题的最新状态。我们使用PASCAL3D +和ObjectNet3D数据集来提供全面的实验评估和主要结果。借助提出的模型,我们在两个数据集中均实现了最新的性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号