首页> 外文期刊>Image and Vision Computing >On the semantics of visual behaviour, structured events and trajectories of human action
【24h】

On the semantics of visual behaviour, structured events and trajectories of human action

机译:关于视觉行为,结构化事件和人类行为轨迹的语义

获取原文
获取原文并翻译 | 示例

摘要

The problem of modelling the semantics of visual events without segmentation or computation of object-centred trajectories is addressed. Two examples are presented. The first illustrates the detection of autonomous visual events without segmentation. The second shows how high-level semantics can be extracted without spatio-temporal tracking or modelling of object trajectories. We wish to infer the semantics of human behavioural patterns for autonomous visual event recognition in dynamic scenes. This is achieved by learning to model the temporal structures of pixel-wise change energy histories using CONDENSATION. The performance of a pixel-energy-history based event model is compared to that of an adaptive Gaussian mixture based scene model. Given low-level autonomous visual events, grouping and high-level reasoning are required to both infer associations between these events and give meaning to their associations. We present an approach for modelling the semantics of interactive human behaviours for the association of a moving head and two hands under self-occlusion and intersection from a single camera view. For associating and tracking the movements of multiple intersecting body parts, we compare the effectiveness of spatio-temporal dynamics based prediction to that of reasoning about body-part associations based on modelling semantics using Bayesian belief networks.
机译:解决了对视觉事件的语义进行建模而无需分割或计算以对象为中心的轨迹的问题。给出两个例子。第一个示例说明了没有分段的自主视觉事件的检测。第二部分显示了如何在不进行时空跟踪或对象轨迹建模的情况下提取高级语义。我们希望为动态场景中的自主视觉事件识别推断人类行为模式的语义。这是通过学习使用CONDENSATION对像素级变化的能量历史的时间结构建模来实现的。将基于像素能量历史的事件模型的性能与基于自适应高斯混合的场景模型的性能进行比较。给定低级别的自主视觉事件,需要分组和高级推理来推断这些事件之间的关联并为其关联赋予意义。我们提出了一种方法,用于对交互式人类行为的语义进行建模,以便在单个摄影机视图下进行自我遮挡和相交的情况下,将移动的头部和两只手关联起来。为了关联和跟踪多个相交的身体部位的运动,我们将基于时空动力学的预测的有效性与基于贝叶斯信念网络基于建模语义的关于身体部位关联的推理的有效性进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号