首页> 外文期刊>Image and Vision Computing >Neural-edge-based vehicle detection and traffic parameter extraction
【24h】

Neural-edge-based vehicle detection and traffic parameter extraction

机译:基于神经边缘的车辆检测和交通参数提取

获取原文
获取原文并翻译 | 示例

摘要

Vehicle detection is a fundamental component of image-based traffic monitoring system. In this paper, we propose a neural-edge-based vehicle detection method to improve the accuracy of vehicle detection and classification. In this method, the feature information is extracted by the seed-filling-based method and is presented to the input of neural network for vehicle detection and classification. The neural-edge-based vehicle detection method is effective and the correct rate of vehicle detection is higher than 96%, independent of environmental conditions. Also, traffic parameters, such as vehicle count, vehicle class, and vehicle speed, are extracted via vehicle tracking method
机译:车辆检测是基于图像的交通监控系统的基本组成部分。在本文中,我们提出了一种基于神经边缘的车辆检测方法,以提高车辆检测和分类的准确性。在这种方法中,特征信息是通过基于种子填充的方法提取的,并提供给神经网络的输入以进行车辆检测和分类。基于神经边缘的车辆检测方法是有效的,并且与环境条件无关,车辆检测的正确率高于96%。此外,通过车辆跟踪方法提取交通参数,例如车辆数量,车辆类别和车辆速度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号