首页> 外文期刊>Image and Vision Computing >Reconstruction of segmentally articulated structure in freeform movement with low density feature points
【24h】

Reconstruction of segmentally articulated structure in freeform movement with low density feature points

机译:具有低密度特征点的自由运动中分段关节结构的重建

获取原文
获取原文并翻译 | 示例

摘要

Though a large body of research has focused on tracking and identifying objects from the domain of colour or grey-scale images, there is a relative dearth in the literature on complex articulatedon-rigid motion reconstruction from a collection of low density feature points. In this paper, we propose a segment-based articulated matching algorithm to establish a crucial self-initialising identification in model-based point-feature tracking of articulated motion with near-rigid segments. We avoid common assumptions such as pose similarity or small motion with respect to the model, and assume no prior knowledge of a specific movement from which to restrict pose identification. Experimental results based on synthetic pose and real-world human motion capture data demonstrate the ability of the algorithm to perform the identification task.
机译:尽管大量的研究集中在从彩色或灰度图像领域跟踪和识别对象,但是从低密度特征点集合中进行复杂的关节运动/非刚性运动重建的文献中相对缺乏。在本文中,我们提出了一种基于段的关节匹配算法,以在基于模型的近刚性段关节运动的点特征跟踪中建立关键的自初始化识别。我们避免使用常见的假设,例如相对于模型的姿势相似性或较小的运动,并且不假设事先了解限制姿势识别的特定运动。基于合成姿势和现实世界人类运动捕捉数据的实验结果证明了该算法执行识别任务的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号