首页> 外文期刊>Image and Vision Computing >Face recognition from 2D and 3D images using 3D Gabor filters
【24h】

Face recognition from 2D and 3D images using 3D Gabor filters

机译:使用3D Gabor滤镜从2D和3D图像中识别人脸

获取原文
获取原文并翻译 | 示例

摘要

To recognize faces with different facial expressions or varying views from only one stored prototype per person is challenging. This paper presents such a system based on both 3D range data as well as the corresponding 2D gray-level facial images. The traditional 3D Gabor filter (3D TGF) is explored in the face recognition domain to extract expression-invariant features. To extract view-invariant features, a rotation-invariant 3D spherical Gabor filter (3D SGF) is proposed. Furthermore, a two-dimensional (2D) Gabor histogram is employed to represent the Gabor responses of the 3D SGF for solving the missing-point problem caused by self-occlusions under large rotation angles. The choice of 3D Gabor filter parameters for face recognition is examined as well. To match a given test face with each model face, the Least Trimmed Square Hausdorff Distance (LTS-HD) is employed to tackle the possible partial-matching problem. Experimental results based on our face database involving 80 persons have demonstrated that our approach outperforms the standard Eigenface approach and the approach using the 2D Gabor-wavelets representation.
机译:每人仅从一个存储的原型中识别出具有不同面部表情或不同视图的面孔是一项挑战。本文提出了一种基于3D范围数据以及相应的2D灰度面部图像的系统。在面部识别领域中探索了传统的3D Gabor滤波器(3D TGF),以提取表达不变的特征。为了提取视图不变特征,提出了旋转不变的3D球形Gabor滤波器(3D SGF)。此外,采用二维(2D)Gabor直方图来表示3D SGF的Gabor响应,以解决在大旋转角度下由自闭塞引起的缺失点问题。还检查了用于面部识别的3D Gabor滤波器参数的选择。为了使给定的测试面与每个模型面匹配,采用最小修剪平方Hausdorff距离(LTS-HD)来解决可能的部分匹配问题。基于涉及80人的面部数据库的实验结果表明,我们的方法优于标准的特征脸方法和使用2D Gabor小波表示的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号