首页> 外文期刊>Image and Vision Computing >Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel
【24h】

Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel

机译:基于局部高斯求和核的支持向量机在部分遮挡下的鲁棒人脸识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the use of Support Vector Machine (SVM) with local Gaussian summation kernel for robust face recognition under partial occlusion. In recent years, the effectiveness of SVM and local features has been reported. However, because conventional methods apply one kernel to global features and global features are influenced easily by noise or occlusion, the conventional methods are not robust to occlusion. The recognition method based on local features, however, is robust to occlusion because partial occlusion affects only specific local features. In order to utilize this property of local features in SVM, local kernels are applied to local features. The use of local kernels in SVM requires local kernel integration. The summation of local kernels is used as the integration method in this study. The effectiveness and robustness of the proposed method are shown by comparison with global kernel based SVM. The recognition rate of the proposed method is high under large occlusion, whereas the recognition rate of the SVM with the global Gaussian kernel decreases drastically. Furthermore, we investigate the robustness to practical occlusion in the real world using the AR face database. Although only face images with non-occlusion are used for training, faces wearing sunglasses or a scarf are classified with high accuracy.
机译:本文介绍了将支持向量机(SVM)与局部高斯求和内核一起用于部分遮挡下的鲁棒人脸识别。近年来,已报道了SVM和局部功能的有效性。但是,由于常规方法将一个内核应用于全局特征,并且全局特征容易受到噪声或遮挡的影响,因此常规方法对遮挡的鲁棒性不强。然而,基于局部特征的识别方法对于遮挡是鲁棒的,因为部分遮挡仅影响特定的局部特征。为了在SVM中利用本地特征的此属性,将本地内核应用于本地特征。在SVM中使用本地内核需要本地内核集成。本研究将局部核的总和用作集成方法。通过与基于全局内核的支持向量机进行比较,表明了该方法的有效性和鲁棒性。该方法在大遮挡下的识别率很高,而具有全局高斯核的支持向量机的识别率却急剧下降。此外,我们使用AR人脸数据库研究了对实际遮挡的鲁棒性。尽管仅使用不遮挡的脸部图像进行训练,但戴着墨镜或围巾的脸部仍具有很高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号