首页> 外文期刊>Image and Vision Computing >A model for dynamic object segmentation with kernel density estimation based on gradient features
【24h】

A model for dynamic object segmentation with kernel density estimation based on gradient features

机译:基于梯度特征的核密度估计的动态目标分割模型

获取原文
获取原文并翻译 | 示例

摘要

The dynamic object segmentation in videos taken from a static camera is a basic technique in many vision surveillance applications. In order to suppress fake objects caused by dynamic cast shadows and reflection images, this paper presents a novel segmentation model with the function of cast shadow and reflection image suppression. This model is a kernel density estimation model based on dynamic gradient features. Unlike the conventional kernel density estimation model which can only suppress cast shadows in color videos, this model can also suppress them in intensity videos, and under the circumstance of diffusion it can suppress reflection images effectively. Although this model may cause the increase of the false negative rate, its function of fake object suppression is remarkable. Furthermore, the false negative rate can be reduced with other convenient methods. Some experimental results by real videos are also presented in this paper to demonstrate the effectiveness of this model.
机译:从静态摄像机拍摄的视频中的动态对象分割是许多视觉监控应用程序中的一项基本技术。为了抑制动态阴影和反射图像造成的假物体,提出了一种具有阴影和反射图像抑制功能的新型分割模型。该模型是基于动态梯度特征的核密度估计模型。与传统的只能在彩色视频中抑制投射阴影的核密度估计模型不同,该模型还可以在强度视频中抑制投射阴影,并且在扩散的情况下可以有效地抑制反射图像。尽管该模型可能会导致假阴性率的增加,但其假物体抑制功能却非常出色。此外,可以通过其他方便的方法来降低误报率。本文还通过真实视频提供了一些实验结果,以证明该模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号