首页> 外文期刊>Image and Vision Computing >Learning a generic 3D face model from 2D image databases using incremental Structure-from-Motion
【24h】

Learning a generic 3D face model from 2D image databases using incremental Structure-from-Motion

机译:使用动感增量结构从2D图像数据库中学习通用3D人脸模型

获取原文
获取原文并翻译 | 示例

摘要

Over the last decade 3D face models have been extensively used in many applications such as face recognition, facial animation and facial expression analysis. 3D Morphable Models (MMs) have become a popular tool to build and fit 3D face models to images. Critical to the success of MMs is the ability to build a generic 3D face model. Major limitations in the MMs building process are: (1) collecting 3D data usually involves the use of expensive laser scans and complex capture setups, (2) the number of available 3D databases is limited, and typically there is a lack of expression variability and (3) finding correspondences and registering the 3D model is a labor intensive and error prone process.rnThis paper proposes an incremental Structure-from-Motion (SfM) approach to learn a generic 3D face model from large collections of existing 2D hand-labeled images containing many subjects under different expressions and poses. The two major contributions of the paper are: (1) learning a generic 3D deformable face model from 2D databases and (2) incorporating a prior subspace into the incremental SfM formulation to provide robustness to noise, missing data and degenerate shape configurations. Experimental results on the CMU-PIE database show improvements in the generalization of the 3D face model across expression and identity.
机译:在过去的十年中,3D面部模型已广泛用于许多应用中,例如面部识别,面部动画和面部表情分析。 3D可变形模型(MM)已成为一种流行的工具,可用于将3D人脸模型构建和拟合到图像。 MM成功的关键是建立通用3D人脸模型的能力。 MM建模过程的主要限制是:(1)收集3D数据通常涉及使用昂贵的激光扫描和复杂的捕获设置,(2)可用3D数据库的数量有限,并且通常缺乏表达变异性和(3)查找对应关系并注册3D模型是一个劳动密集型且容易出错的过程。本文提出了一种增量“运动结构(SfM)”方法,以从大量现有2D手工标记图像中学习通用3D人脸模型。包含许多不同表情和姿势的主题。本文的两个主要贡献是:(1)从2D数据库中学习通用的3D可变形人脸模型;(2)将先前的子空间合并到增量SfM公式中,以提供对噪声,丢失数据和退化形状配置的鲁棒性。 CMU-PIE数据库上的实验结果表明,跨表达和身份的3D人脸模型泛化能力有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号