首页> 外文期刊>Image and Vision Computing >Recognition of 3D facial expression dynamics
【24h】

Recognition of 3D facial expression dynamics

机译:识别3D面部表情动态

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a method that exploits 3D motion-based features between frames of 3D facial geometry sequences for dynamic facial expression recognition. An expressive sequence is modelled to contain an onset followed by an apex and an offset. Feature selection methods are applied in order to extract features for each of the onset and offset segments of the expression. These features are then used to train GentleBoost classifiers and build a Hidden Markov Model in order to model the full temporal dynamics of the expression. The proposed fully automatic system was employed on the BU-4DFE database for distinguishing between the six universal expressions: Happy, Sad, Angry, Disgust, Surprise and Fear. Comparisons with a similar 2D system based on the motion extracted from facial intensity images was also performed. The attained results suggest that the use of the 3D information does indeed improve the recognition accuracy when compared to the 2D data in a fully automatic manner.
机译:在本文中,我们提出了一种方法,该方法利用3D面部几何序列的帧之间的基于3D运动的特征进行动态面部表情识别。对表达序列进行建模,使其包含起点,顶点和偏移量。应用特征选择方法以便为表达式的每个起始和偏移片段提取特征。然后,这些特征将用于训练GentleBoost分类器并建立隐马尔可夫模型,以便对表达式的整个时间动态建模。 BU-4DFE数据库采用了拟议的全自动系统,用于区分六个通用表达:快乐,悲伤,愤怒,厌恶,惊奇和恐惧。还基于从面部强度图像提取的运动与类似的2D系统进行了比较。所获得的结果表明,与全自动2D数据相比,使用3D信息确实可以提高识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号