首页> 外文期刊>Image and Vision Computing >Visual tracking based on Distribution Fields and online weighted multiple instance learning
【24h】

Visual tracking based on Distribution Fields and online weighted multiple instance learning

机译:基于分布域和在线加权多实例学习的视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an improved multiple instance learning (MIL) tracker representing target with Distribution Fields (DFs) and building a weighted-geometric-mean MIL classifier. Firstly, we adopt DF layer as feature instead of traditional Haar-like one to model the target thanks to the DF specificity and the landscape smoothness. Secondly, we integrate sample importance into the weighted-geometric-mean MIL model and derive an online approach to maximize the bag likelihood by AnyBoost gradient framework to select the most discriminative layers. Due to the target model consisting of selected discriminative layers, our tracker is more robust while needing fewer features than the traditional Haar-like one and the original DFs one. The experimental results show higher performances of our tracker than those of five state-of-the-art ones on several challenging video sequences.
机译:本文提出了一种改进的多实例学习(MIL)跟踪器,该跟踪器用分布域(DF)表示目标并构建了加权几何平均MIL分类器。首先,由于DF的特异性和景观的平滑性,我们采用DF层作为特征,而不是像传统的Haar那样对目标进行建模。其次,我们将样本重要性整合到加权几何平均MIL模型中,并通过AnyBoost梯度框架推导一种在线方法来最大化袋子可能性,从而选择最具判别力的层次。由于目标模型由选定的判别层组成,因此与传统的类似Haar的模型和原始DF的模型相比,我们的跟踪器更强大,同时所需的功能更少。实验结果表明,在一些具有挑战性的视频序列上,我们的跟踪器的性能要比五个最新技术的跟踪器更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号