首页> 外文期刊>Image and Vision Computing >Feature subset selection applied to model-free gait recognition
【24h】

Feature subset selection applied to model-free gait recognition

机译:特征子集选择应用于无模型步态识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we tackle the problem of gait recognition based on the model-free approach. Numerous methods exist; they all lead to high dimensional feature spaces. To address the problem of high dimensional feature space, we propose the use of the Random Forest algorithm to rank features' importance. In order to efficiently search throughout subspaces, we apply a backward feature elimination search strategy. Our first experiments are carried out on unknown covariate conditions. Our first results suggest that the selected features contribute to increase the CCR of different existing classification methods. Secondary experiments are performed on unknown covariate conditions and viewpoints. Inspired by the location of our first experiments' features, we proposed a simple mask. Experimental results demonstrate that the proposed mask gives satisfactory results for all angles of the probe and consequently is not view specific. We also show that our mask performs well when an uncooperative experimental setup is considered as compared to the state-of-the art methods. As a consequence, we propose a panoramic gait recognition framework on unknown covariate conditions. Our results suggest that panoramic gait recognition can be performed under unknown covariate conditions. Our approach can greatly reduce the complexity of the classification problem while achieving fair correct classification rates when gait is captured with unknown conditions.
机译:在本文中,我们基于无模型方法解决了步态识别问题。存在许多方法。它们都导致高维特征空间。为了解决高维特征空间的问题,我们建议使用随机森林算法对特征的重要性进行排名。为了有效地搜索整个子空间,我们应用了向后特征消除搜索策略。我们的第一个实验是在未知协变量条件下进行的。我们的第一个结果表明,所选特征有助于提高现有不同分类方法的CCR。在未知的协变量条件和观点下进行了二次实验。受第一个实验功能位置的启发,我们提出了一个简单的口罩。实验结果表明,所提出的掩模对于探头的所有角度都能提供令人满意的结果,因此并非特定视图。我们还显示,与现有技术方法相比,当考虑不合作的实验装置时,我们的口罩性能良好。因此,我们提出了在未知协变量条件下的全景步态识别框架。我们的结果表明全景步态识别可以在未知的协变量条件下执行。当步态在未知条件下被捕获时,我们的方法可以大大降低分类问题的复杂性,同时获得合理的正确分类率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号