首页> 外文期刊>Image and Vision Computing >Recognizing expressions from face and body gesture by temporal normalized motion and appearance features
【24h】

Recognizing expressions from face and body gesture by temporal normalized motion and appearance features

机译:通过时间归一化的运动和外观特征识别面部和身体手势中的表情

获取原文
获取原文并翻译 | 示例

摘要

Recently, recognizing affects from both face and body gestures attracts more attentions. However, it still lacks of efficient and effective features to describe the dynamics of face and gestures for real-time automatic affect recognition. In this paper, we combine both local motion and appearance feature in a novel framework to model the temporal dynamics of face and body gesture. The proposed framework employs MHI-HOG and Image-HOG features through temporal normalization or bag of words to capture motion and appearance information. The MHI-HOG stands for Histogram of Oriented Gradients (HOG) on the Motion History Image (MHI). It captures motion direction and speed of a region of interest as an expression evolves over the time. The Image-HOG captures the appearance information of the corresponding region of interest. The temporal normalization method explicitly solves the time resolution issue in the video-based affect recognition. To implicitly model local temporal dynamics of an expression, we further propose a bag of words (BOW) based representation for both MHI-HOG and Image-HOG features. Experimental results demonstrate promising performance as compared with the state-of-the-art. Significant improvement of recognition accuracy is achieved as compared with the frame-based approach that does not consider the underlying temporal dynamics.
机译:近来,识别来自面部和身体手势的影响引起了更多的关注。但是,它仍然缺乏有效和有效的功能来描述用于实时自动情感识别的面部和手势动态。在本文中,我们在一个新颖的框架中结合了局部运动和外观特征,以模拟面部和身体手势的时间动态。所提出的框架通过时间归一化或单词袋利用MHI-HOG和Image-HOG功能来捕获运动和外观信息。 MHI-HOG代表运动历史图像(MHI)上的定向梯度直方图(HOG)。随着表达式随着时间的发展,它捕获感兴趣区域的运动方向和速度。 Image-HOG捕获相应感兴趣区域的外观信息。时间归一化方法明确解决了基于视频的情感识别中的时间分辨率问题。为了隐式地建模表达式的局部时态动力学,我们进一步针对MHI-HOG和Image-HOG功能提出了基于词袋(BOW)的表示形式。实验结果表明,与最新技术相比,其性能令人鼓舞。与不考虑潜在时间动态的基于帧的方法相比,可实现识别准确性的显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号