首页> 外文期刊>Image and Vision Computing >Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks
【24h】

Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks

机译:在图像重新排名和排名聚合任务中使用倒数kNN图进行无监督流形学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used both for re-ranking and rank aggregation tasks. Unlike traditional diffusion process methods, which require matrix multiplication operations, our algorithm takes only a subset of ranked lists as input, presenting linear complexity in terms of computational and storage requirements. We conducted a large evaluation protocol involving shape, color, and texture descriptors, various datasets, and comparisons with other post-processing approaches. The re-ranking and rank aggregation algorithms yield better results in terms of effectiveness performance than various state-of-the-art algorithms recently proposed in the literature, achieving bull's eye and MAP scores of 100% on the well-known MPEG-7 shape dataset.
机译:在本文中,我们提出了一种无监督的远程学习方法,以提高图像检索任务的有效性。我们提出了倒数kNN图算法,该算法考虑了k倒数邻域的上下文中排名列表之间的关系。考虑到数据集流形的几何形状,相似性会在邻居之间传播。所提出的方法可以用于重新排序和排序聚合任务。与需要矩阵乘法运算的传统扩散过程方法不同,我们的算法仅将排名列表的子集作为输入,因此在计算和存储要求方面呈现出线性复杂性。我们进行了一个大型评估协议,涉及形状,颜色和纹理描述符,各种数据集以及与其他后处理方法的比较。与最近文献中提出的各种最新算法相比,重新排序和秩聚合算法在有效性方面产生了更好的结果,在众所周知的MPEG-7形状上获得了100%的靶心和MAP分数数据集。

著录项

  • 来源
    《Image and Vision Computing》 |2014年第2期|120-130|共11页
  • 作者单位

    Department of Statistics, Applied Mathematics and Computing, Universidade Estadual Paulista (UNESP), Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil;

    RECOD Lab, Institute of Computing (IC), University of Campinas (Unicamp), Av. Albert Einstein, 1251, Campinas, SP, 13083-852, Brazil,SAMSUNG Research Institute, Av Cambacicas, 1200, Campinas, SP, 13097-104, Brazil;

    RECOD Lab, Institute of Computing (IC), University of Campinas (Unicamp), Av. Albert Einstein, 1251, Campinas, SP, 13083-852, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Content-based image retrieval; Re-ranking; Rank aggregation;

    机译:基于内容的图像检索;重新排名;排名汇总;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号