首页> 外文期刊>Image and Vision Computing >Wavelet-based gender detection on off-line handwritten documents using probabilistic finite state automata
【24h】

Wavelet-based gender detection on off-line handwritten documents using probabilistic finite state automata

机译:使用概率有限状态自动机对离线手写文档进行基于小波的性别检测

获取原文
获取原文并翻译 | 示例

摘要

Detection of gender from handwriting of an individual presents an interesting research problem with applications in forensic document examination, writer identification and psychological studies. This paper presents an effective technique to predict the gender of an individual from off-line images of handwriting. The proposed technique relies on a global approach that considers writing images as textures. Each handwritten image is converted into a textured image which is decomposed into a series of wavelet sub-bands at a number of levels, The wavelet sub-bands are then extended into data sequences. Each data sequence is quantized to produce a probabilistic finite state automata (PFSA) that generates feature Vectors. These features are used to train two classifiers, artificial neural network and support vector machine to discriminate between male and female writings. The performance of the proposed system was evaluated on two databases, QUWI and MSHD, within a number of challenging experimental scenarios and realized classification rates of up to 80%. The experimental results show the superiority of the proposed technique over existing techniques in terms of classification rates. (C) 2016 Elsevier B.V. All rights reserved.
机译:从一个人的笔迹检测性别存在一个有趣的研究问题,在法证文件检查,作者鉴定和心理学研究中的应用。本文提出了一种有效的技术,可以从离线手写图像中预测一个人的性别。所提出的技术依赖于将图像写入为纹理的全局方法。每个手写图像都转换为纹理图像,然后将其分解为多个级别的一系列小波子带。然后,将小波子带扩展为数据序列。对每个数据序列进行量化,以产生生成特征向量的概率有限状态自动机(PFSA)。这些特征用于训练两个分类器:人工神经网络和支持向量机,以区分男性和女性作品。在许多具有挑战性的实验场景中,在两个数据库QUWI和MSHD上对所提出系统的性能进行了评估,实现的分类率高达80%。实验结果表明,在分类率方面,所提出的技术优于现有技术。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号