首页> 外文期刊>Image and Vision Computing >Facial attributes for active authentication on mobile devices
【24h】

Facial attributes for active authentication on mobile devices

机译:在移动设备上进行主动身份验证的面部属性

获取原文
获取原文并翻译 | 示例

摘要

We present a method using facial attributes for continuous authentication of smartphone users. We train a bunch of binary attribute classifiers which provide compact visual descriptions of faces. The learned classifiers are applied to the image of the current user of a mobile device to extract the attributes and then authentication is done by simply comparing the calculated attributes with the enrolled attributes of the original user. Extensive experiments on two publicly available unconstrained mobile face video datasets show that our method is able to capture meaningful attributes of faces and performs better than the previously proposed LBP-based authentication method. We also provide a practical variant of our method for efficient continuous authentication on an actual mobile device by doing extensive platform evaluations of memory usage, power consumption, and authentication speed. Published by Elsevier B.V.
机译:我们提出了一种使用面部属性对智能手机用户进行连续身份验证的方法。我们训练了一堆二进制属性分类器,这些分类器提供了面部的紧凑视觉描述。将学习到的分类器应用于移动设备当前用户的图像以提取属性,然后通过简单地将计算出的属性与原始用户的注册属性进行比较来完成身份验证。在两个公开可用的无约束移动人脸视频数据集上的大量实验表明,我们的方法能够捕获有意义的人脸属性,并且比以前提出的基于LBP的身份验证方法表现更好。通过对内存使用,功耗和身份验证速度进行广泛的平台评估,我们还提供了一种方法的实际变体,可在实际的移动设备上进行有效的连续身份验证。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号