首页> 外文期刊>Image and Vision Computing >Binary feature fusion for discriminative and secure multi-biometric cryptosystems
【24h】

Binary feature fusion for discriminative and secure multi-biometric cryptosystems

机译:用于区分性和安全性的多生物密码系统的二进制特征融合

获取原文
获取原文并翻译 | 示例

摘要

Biometric cryptosystem has been proven to be a promising approach for template protection. Cryptosystems such as fuzzy extractor and fuzzy commitment require discriminative and informative binary biometric input to offer accurate and secure recognition. In multi-modal biometric recognition, binary features can be produced via fusing the real-valued unimodal features and binarizing the fused features. However, when the extracted features of certain modality are represented in binary and the extraction parameters are not known, real-valued features of other modalities need to be binarized and the feature fusion needs to be carried out at the binary level. In this paper, we propose a binary feature fusion method that extracts a set of fused binary features with high discriminability (small intra-user and large inter-user variations) and entropy (weak dependency among bits and high bit uniformity) from multiple sets of binary unimodal features. Unlike existing fusion methods that mainly focus on discriminability, the proposed method focuses on both feature discriminability and system security: The proposed method 1) extracts a set of weakly dependent feature groups from the multiple unimodal features; and 2) fuses each group to a bit using a mapping that minimizes the intra-user variations and maximizes the inter-user variations and uniformity of the fused bit. Experimental results on three multi-modal databases show that fused binary feature of the proposed method has both higher discriminability and higher entropy compared to the unimodal features and the fused features generated from the state-of-the-art binary fusion approaches. (C) 2016 Published by Elsevier B.V.
机译:生物特征密码系统已被证明是一种有前途的模板保护方法。诸如模糊提取器和模糊承诺之类的密码系统需要具有区别性和信息性的二进制生物特征输入,以提供准确和安全的识别。在多峰生物特征识别中,可以通过融合实值单峰特征并对融合特征进行二值化来生成二进制特征。但是,当某些模态的提取特征以二进制表示并且提取参数未知时,其他模态的实值特征需要进行二值化,并且特征融合需要在二进制级别进行。在本文中,我们提出了一种二元特征融合方法,该方法从多组数据中提取出一组具有高可分辨性(用户内部较小且用户间差异较大)和熵(位之间的依赖性弱且位均匀性高)的融合二进制特征。二元单峰特征。与现有的融合方法主要关注可分辨性不同,所提出的方法着重于特征可分辨性和系统安全性:所提出的方法1)从多个单峰特征中提取一组弱相关的特征组; 2)使用最小化用户内变化并最大化用户间变化和融合位的均匀性的映射将每个组融合到位。在三个多模态数据库上的实验结果表明,与单模态特征和最新的二进制融合方法生成的融合特征相比,该方法的融合二进制特征具有更高的可分辨性和更高的熵。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号