首页> 外文期刊>Image Processing, IET >Multifocus image fusion using modified pulse coupled neural network for improved image quality
【24h】

Multifocus image fusion using modified pulse coupled neural network for improved image quality

机译:使用改进的脉冲耦合神经网络进行多焦点图像融合以提高图像质量

获取原文
获取原文并翻译 | 示例

摘要

The present day camera systems have the limitation of acquiring the clearer image of a scene having objects at different distances. This limitation can be overcome by fusion of multiple images of the scene taken with different camera settings. The fusion of these images comes under the category of multifocus image fusion. In the existing method of image, fusion partitioned source image blocks are fused by pulse coupled neural network (PCNN) based on their clarity measure. PCNN plays an important role in the image fusion process in choosing the best-quality image block for fused image. Fusion method becomes tedious and time consuming because of the inherent complexity of PCNN. In this study, a modified approach of PCNN suitable for application in image fusion technique is proposed by reducing the processing time and computational complexity. The modifications proposed are in linking and feeding field of PCNN. This study presents a method for multifocus image fusion by using modified PCNN (MPCNN) with spatial frequency (SF) and energy of Laplacian (EOL) as clarity measures. The proposed method of image fusion using MPCNN results in better quality of fused image with reduced root mean square error (RMSE) and computational time requirements as compared to conventional PCNN.
机译:当前的照相机系统具有获取具有不同距离的物体的场景的更清晰图像的限制。可以通过融合使用不同相机设置拍摄的场景的多个图像来克服此限制。这些图像的融合属于多焦点图像融合的范畴。在现有的图像方法中,基于脉冲图像的清晰度度量,通过脉冲耦合神经网络(PCNN)对分割的源图像块进行融合。在为融合图像选择最佳质量的图像块时,PCNN在图像融合过程中起着重要作用。由于PCNN固有的复杂性,融合方法变得乏味且耗时。通过减少处理时间和计算复杂度,提出了一种适用于图像融合技术的改进的PCNN方法。提出的修改是在PCNN的链接和馈送领域。这项研究提出了一种通过使用改进的PCNN(MPCNN)和空间频率(SF)和拉普拉斯能量(EOL)作为清晰度量的多焦点图像融合方法。与传统的PCNN相比,使用MPCNN提出的图像融合方法可产生更好的融合图像质量,同时减少均方根误差(RMSE)和计算时间。

著录项

  • 来源
    《Image Processing, IET》 |2010年第6期|p.443-451|共9页
  • 作者

    Agrawal D.Singhai J.;

  • 作者单位

    Department of Electronics and Communication Engineering, MANIT, Bhopal, MP, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号