首页> 外文期刊>Image Processing, IET >Convex-relaxed active contour model based on localised kernel mapping
【24h】

Convex-relaxed active contour model based on localised kernel mapping

机译:基于局部核映射的凸松弛主动轮廓模型

获取原文
获取原文并翻译 | 示例

摘要

Intensity inhomogeneity is one of the major obstacles for intensity-based segmentation in many applications. The recently proposed kernel mapping (KM) method has exhibited excellent performance on segmenting various types of noisy images while it is not effective to handle intensity inhomogeneity. To overcome this drawback, this study presents a localised KM (LKM) method based on the fact that intensity inhomogeneity can be ignored in a local neighbourhood. The authors' method first reconstructs the KM formulation of image segmentation in a neighbourhood of each pixel, and then such formulations for all pixels can be integrated together to derive the LKM energy functional. Minimisation of the energy functional is implemented by solving an equivalent convex-relaxed problem whose optimisation can be quickly achieved via the split Bregman method. Experimental results on two-phase segmentation and multiphase segmentation demonstrate competitive performance of the LKM method in the presence of intensity inhomogeneity and severe noise.
机译:强度不均匀是许多应用中基于强度分割的主要障碍之一。最近提出的核映射(KM)方法在分割各种类型的噪点图像时表现出出色的性能,但对处理强度不均匀性却无效。为了克服这一缺点,本研究提出了一种基于局部强度KM不均匀性可以忽略不计的事实的局部KM(LKM)方法。作者的方法首先在每个像素附近重建图像分割的KM公式,然后可以将所有像素的此类公式集成在一起以得出LKM能量函数。能量函数的最小化是通过解决等效的凸松弛问题来实现的,该问题可以通过拆分Bregman方法快速实现。两相分割和多相分割的实验结果表明,在存在强度不均匀和严重噪声的情况下,LKM方法具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号