首页> 外文期刊>Image Processing, IET >Edge patch image-based morphological profiles for classification of multispectral and hyperspectral data
【24h】

Edge patch image-based morphological profiles for classification of multispectral and hyperspectral data

机译:基于边缘补丁图像的形态学概况,用于多光谱和高光谱数据的分类

获取原文
获取原文并翻译 | 示例

摘要

Morphological profiles (MPs) are efficiently exploited for modelling the geometrical features of structures in a scene. They increase the discriminability between different classes. The degree of processing of images depends on the geometrical structure and shape of the used structure element (SE) in the transformation. Since the geometric structures of an image are not the same in the whole image, the use of a fixed shape for SE may not be so efficient. Thus, it is proposed to extract an edge patch image-based morphological profile (EPIMP), which considers SEs with different shapes for different areas of image. The used SE in each patch of image is corresponding to the shape (i.e. edge image) of that patch. The proposed method is experimented on both multispectral and hyperspectral images and the obtained results show that the proposed method is much more efficient than the conventional MPs. Moreover, the experiments show the superiority of EPIMP compared with some state-of-the-art spectral-spatial classification methods such as generalised composite kernel, multiple feature learning, weighted joint collaborative representation and multiple-structure-element non-linear multiple kernel learning.
机译:有效利用形态学轮廓(MP)来建模场景中结构的几何特征。它们增加了不同类别之间的可分辨性。图像的处理程度取决于转换中所用结构元素(SE)的几何结构和形状。由于图像的几何结构在整个图像中都不相同,因此对SE使用固定形状可能不是那么有效。因此,提出提取基于边缘补丁图像的形态学轮廓(EPIMP),其针对图像的不同区域考虑具有不同形状的SE。每个图像补丁中使用的SE对应于该补丁的形状(即边缘图像)。该方法在多光谱和高光谱图像上均进行了实验,所得结果表明,该方法比常规MP具有更高的效率。此外,实验表明,EPIMP与某些最新的光谱空间分类方法(如广义复合核,多特征学习,加权联合协作表示和多结构元素非线性多核学习)相比具有优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号