首页> 外文期刊>Image Processing, IET >Survey of single image super-resolution reconstruction
【24h】

Survey of single image super-resolution reconstruction

机译:单幅图像超分辨率重建调查

获取原文
获取原文并翻译 | 示例

摘要

Image super-resolution reconstruction refers to a technique of recovering a high-resolution (HR) image (or multiple images) from a low-resolution (LR) degraded image (or multiple images). Due to the breakthrough progress in deep learning in other computer vision tasks, people try to introduce deep neural network and solve the problem of image super-resolution reconstruction by constructing a deep-level network for end-to-end training. The currently used deep learning models can divide the SISR model into four types: interpolation-based preprocessing-based model, original image processing based model, hierarchical feature-based model, and high-frequency detail-based model, or shared the network model. The current challenges for super-resolution reconstruction are mainly reflected in the actual application process, such as encountering an unknown scaling factor, losing paired LR-HR images, and so on.
机译:图像超分辨率重建是指从低分辨率(LR)降级图像(或多个图像)恢复高分辨率(HR)图像(或多个图像)的技术。由于其他计算机视觉任务的深度学习进展突破,人们试图引入深度神经网络,并通过构建端到端训练的深层网络来解决图像超分辨率重建问题。目前使用的深度学习模型可以将SISR模型分为四种类型:基于插值的基于预处理的模型,基于原始图像处理的模型,基于分层特征的模型,以及基于高频细节的模型,或共享网络模型。超级分辨率重建的当前挑战主要反映在实际应用程序中,例如遇到未知的缩放因子,丢失配对的LR-HR图像等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号