首页> 外文期刊>Image Processing, IET >End-to-end learning interpolation for object tracking in low frame-rate video
【24h】

End-to-end learning interpolation for object tracking in low frame-rate video

机译:低帧速率视频对象跟踪的端到端学习插值

获取原文
获取原文并翻译 | 示例

摘要

In many scenarios, where videos are transmitted through bandwidth-limited channels for subsequent semantic analytics, the choice of frame rates has to balance between bandwidth constraints and analytics performance. Faced with this practical challenge, this study focuses on enhancing object tracking at low frame rates and proposes a learning Interpolation for tracking framework. This framework embeds an implicit video frame interpolation sub-network, which is concatenated and jointly trained with another object tracking sub-network. Once a low frame-rate video is an input, it is first mapped into a high frame-rate latent video, based on which the tracker is learned. Novel strategies and loss functions are derived to ensure the effective end-to-end optimisation of the authors' network. On several challenging benchmarks and settings, their method achieves a highly competitive tradeoff between frame rate and tracking accuracy. As is known, the implications of interpolation on semantic video analytics and tracking remain unexplored, and the authors expect their method to find many applications in mobile embedded vision, Internet of Things and edge computing.
机译:在许多场景中,通过用于随后的语义分析的带宽限制通道传输视频,帧速率的选择必须在带宽约束和分析性能之间平衡。这项研究面临着这种实际挑战,本研究致力于提高低帧速率的对象跟踪,并提出用于跟踪框架的学习插值。该框架嵌入了隐式视频帧插值子网络,其与另一个对象跟踪子网连接和联合培训。一旦低帧速率视频是输入,就首先映射到高帧速率潜视频中,基于其学习的跟踪器。推导出新的策略和损失函数,以确保作者网络的有效结束优化。在若干具有挑战性的基准和设置中,它们的方法在帧速率和跟踪精度之间实现了高度竞争的权衡。众所周知,插值对语义视频分析和跟踪的影响仍未开发,并且作者希望他们的方法在移动嵌入式视觉,事物互联网和边缘计算中找到许多应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号