首页> 外文期刊>Image Processing, IET >Low light image enhancement with adaptive sigmoid transfer function
【24h】

Low light image enhancement with adaptive sigmoid transfer function

机译:具有自适应矩形传递函数的低光图像增强功能

获取原文
获取原文并翻译 | 示例

摘要

Low light image enhancement algorithms intent to produce visually pleasant images and target to extract valuable information for computer vision applications. The task of improving the quality of low light images is a challenging one. The existing methods for quality improvement undeniably annoy the visual aesthetics and suffer the major drawback of high computational complexity and less efficiency. To improve the visual quality and lower the distortions, a simple and computationally efficient low light image enhancement framework is presented in this study. To achieve this, an adaptive sigmoid transfer function (ASTF) is used and is derived from the sigmoid activation function of neural networks. By combining ASTF with a Laplacian operator, colour and contrast-enhanced images are obtained. Experiments show the effectiveness of the proposed method with state-of-the-art methods.
机译:低光图像增强算法意图产生视觉上令人愉快的图像和目标,以提取计算机视觉应用的有价值信息。改善低光图像质量的任务是一个具有挑战性的。现有的质量改进方法无可否认地惹恼了视觉美学,​​并遭受高计算复杂性和效率较少的主要缺点。为了提高视觉质量和降低扭曲,本研究提出了一种简单且计算的低光图像增强框架。为实现这一点,使用自适应S形转移函数(ASTF),并源自神经网络的SIGMOID激活函数。通过将ASTF与拉普拉斯操作员组合,获得颜色和对比度增强的图像。实验表明了所提出的方法具有最先进的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号