首页> 外文期刊>Image Processing, IET >Automatic and optimal segmentation of the left ventricle in cardiac magnetic resonance images independent of the training sets
【24h】

Automatic and optimal segmentation of the left ventricle in cardiac magnetic resonance images independent of the training sets

机译:心脏磁共振图像中左心室的自动和最佳分割独立于训练集

获取原文
获取原文并翻译 | 示例

摘要

In cardiac imaging, the boundary of the left ventricle (LV) could be used to measure the dyssynchrony of the heart. Hence, automatic and optimal segmentation of the LV is important. Although deep learning-based methods have achieved significant break-throughs in the accuracy of segmenting LV, it relies on a great number of training sets and the reproduction quality of the tested cases. Due to the variety of patients, it is difficult or impossible to collect the complete training sets that cover all patients with different genders, races, and ages. Therefore, methods independent of the training sets are more reliable and efficient for clinical applications. In this study, the authors propose a training sets-independent method to segment LV optimally and it outperforms all available state-of-the-art training-sets-independent image segmentation methods. In addition, they propose a framework to identify the boundary of the LV automatically. They tested these segmentation methods with both good quality and poor quality images in the proposed framework and verified that the proposed segmentation method yields the optimal solution compared to other state-of-the-art training-sets-independent segmentation methods. Based on their previous research work, the identified boundaries by the proposed approach are accurate enough for calculating the dyssynchrony of the LV.
机译:在心脏成像中,左心室(LV)的边界可用于测量心脏的呼吸话。因此,LV的自动和最佳分割很重要。尽管基于深度学习的方法在分割LV的准确性方面取得了显着的突破,但它依赖于大量的训练集和经过测试案例的再现质量。由于各种患者,难以或不可能收集完整的培训套,以涵盖所有不同的性别,种族和年龄的患者。因此,对于训练集无关的方法对于临床应用更可靠和有效。在这项研究中,作者提出了培训独立的方法,以最佳地进行段LV,并且它优于所有可用的最先进的训练集合的图像分段方法。此外,他们提出了一个框架,以自动识别LV的边界。它们在提出的框架中测试了这些分段方法,并在提议的框架中进行了良好的质量和差的质量图像,并验证了所提出的分割方法与其他最先进的训练集合 - 独立的分割方法相比产生最佳解决方案。基于其先前的研究工作,所确定的方法的识别边界是足以计算LV的呼吸话的困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号