首页> 外文期刊>Image Processing, IET >Fusing HOG and convolutional neural network spatial–temporal features for video-based facial expression recognition
【24h】

Fusing HOG and convolutional neural network spatial–temporal features for video-based facial expression recognition

机译:融合HOG和卷积神经网络时空特征以基于视频的面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

Video-based facial expression recognition (VFER) is the fundamental feature of various computer vision applications. Visual features are the key factors for facial expression recognition. However, the gap between the visual features and the emotions is large. In order to bridge the gap, the proposed method utilises convolutional neural networks (CNNs) and histogram of oriented gradient (HOG) to obtain the more comprehensive feature for VFER. Firstly, it extracts shallow features from the video frame through a number of convolutional kernels in CNNs, which has the characteristics of displacement, scale and deformation invariance. Then, the HOG is employed to extract HOG features from CNN's shallow features, which are strongly correlated with facial expressions. Finally, the support vector machine (SVM) is employed to conduct the task of facial expression recognition. The extensive experiments on RML, CK+ and AFEW5.0 database show that this framework takes on the promising performance and outperforming the state of the arts.
机译:基于视频的面部表情识别(VFER)是各种计算机视觉应用程序的基本功能。视觉特征是面部表情识别的关键因素。但是,视觉特征和情绪之间的差距很大。为了弥合差距,该方法利用卷积神经网络(CNN)和定向梯度直方图(HOG)来获得VFER的更全面特征。首先,它通过CNN中的多个卷积核从视频帧中提取浅层特征,这些卷积核具有位移,缩放和变形不变性的特征。然后,HOG用于从CNN的浅层特征中提取HOG特征,这些浅浅特征与面部表情密切相关。最后,利用支持向量机(SVM)进行面部表情识别。在RML,CK +和AFEW5.0数据库上进行的大量实验表明,该框架具有令人鼓舞的性能,并且性能优于现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号