首页> 外文期刊>Image Processing, IET >Automatic detection of acute lymphoblastic leukaemia based on extending the multifractal features
【24h】

Automatic detection of acute lymphoblastic leukaemia based on extending the multifractal features

机译:基于扩展的多重分形特征自动检测急性淋巴细胞白血病

获取原文
获取原文并翻译 | 示例

摘要

The main purpose of this study is to introduce a new species of features to improve the diagnosis efficiency of acute lymphoblastic leukaemia from microscopic images. First, the authors segmented nuclei by the k-means and watershed algorithms. They extracted three sets of geometrical, statistical, and chaotic features from nuclei images. Six chaotic features were extracted by calculating the fractal dimension from five sub-images driven from the nuclei images, with their grey levels being modified. The authors classified the images into binary and multiclass types via the support vector machine algorithm. They conducted principal component analysis for dimensional reduction of feature space and then evaluated the proposed algorithm for the overfitting problem. The obtained overall results represent 99% accuracy, 99% specificity, and 97% sensitivity values in the classification of six-cell groups. The difference between the train and test errors was <3%, which proves that the classification performance had improved by using the multifractal features.
机译:这项研究的主要目的是介绍一种新的特征,以从显微图像提高急性淋巴细胞白血病的诊断效率。首先,作者通过k均值和分水岭算法对原子核进行了分割。他们从细胞核图像中提取了三组几何,统计和混沌特征。通过计算从原子核图像驱动的五个子图像的分形维数来提取六个混沌特征,并对其灰度进行了修改。作者通过支持向量机算法将图像分为二进制和多类类型。他们进行了主成分分析以减少特征空间的尺寸,然后评估了所提出算法的过拟合问题。在六细胞组的分类中,获得的总体结果代表99%的准确性,99%的特异性和97%的灵敏度值。训练误差和测试误差之间的差异小于3%,这表明通过使用多重分形特征可以提高分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号