首页> 外文期刊>Image Processing, IET >DRU-net: a novel U-net for biomedical image segmentation
【24h】

DRU-net: a novel U-net for biomedical image segmentation

机译:DRU-net:用于生物医学图像分割的新型U-net

获取原文
获取原文并翻译 | 示例

摘要

With the wide applications of biomedical images in the medical field, the segmentation of biomedical images plays an important role in clinical diagnosis, pathological analysis, and medical intervention. Full convolutional neural networks, especially U-net, have improved the performance of segmentation greatly in recent years. However, due to their regular geometric structure, the standard convolutions that they use are inherently limited in dealing with geometric transformations while biomedical objects have huge variations in shape and size. In this study, the authors propose the DRU-net, which is a novel U-net with deformable encoder and reshaping upsampling convolution decoder, for biomedical image segmentation. First, deformable convolutional networks are applied and improved to enhance the learning ability of the encoder for geometric transformations. Second, a novel upsampling method named reshape upsampling convolution is proposed for better-restoring resolution and fusion features. Furthermore, focal loss is used to address class imbalance and model overwhelmed problems in biomedical image segmentation tasks. Theoretic analysis and experimental results have shown that the proposed algorithm not only reduces the number of parameters of U-Net, but also achieves produces competitive results compared with the state-of-the-art algorithms in terms of various quantitative measures on Drosophila electron microscopy dataset and Warwick-QU dataset.
机译:随着生物医学图像在医学领域的广泛应用,生物医学图像的分割在临床诊断,病理分析和医学干预中起着重要的作用。近年来,全卷积神经网络,特别是U-net,极大地提高了分割性能。但是,由于它们规则的几何结构,它们使用的标准卷积在处理几何变换时固有地受到限制,而生物医学对象的形状和大小却存在巨大差异。在这项研究中,作者提出了DRU-net,它是一种新颖的U-net,具有可变形编码器和重塑上采样卷积解码器,用于生物医学图像分割。首先,可变形卷积网络得到了应用和改进,以增强编码器进行几何变换的学习能力。其次,提出了一种新的上采样方法,称为重整上采样卷积,以更好地恢复分辨率和融合特征。此外,焦距损失用于解决类别不平衡问题,并为生物医学图像分割任务中的不堪重负的问题建模。理论分析和实验结果表明,所提出的算法不仅减少了U-Net的参数数量,而且在果蝇电子显微镜上的各种定量测量方法上均与最新算法相比具有竞争优势。数据集和Warwick-QU数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号